是橢圓上異于長軸端點的任一點,,是橢圓的兩個焦點,若,.求證:橢圓的離心率
證明過程見答案
證明:在中,由正弦定理,得

由等比定理得,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,過Aa,0),
B(0,-b),兩點的直線到原點的距離是
⑴求橢圓的方程 ; 
⑵已知直線ykx+1(k0)交橢圓于不同的兩點E、F,且EF都在以B為圓心的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=-x2上的點到直線4x+3y-8=0距離的最小值是(  )
A.B.C.D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與曲線有兩個公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與雙曲線方程為相交,如果定點為弦的中點,求該直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,過其左焦點且斜率為的直線與橢圓及其準線的交點從左到右的順序為(如圖),設
(1)求的解析式;
(2)求的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直線交雙曲線及其漸近線于,,四點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果雙曲線的兩個焦點分別為,一條漸近線方程為,則該雙曲線的方程為________________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓上一點,它到左準線的距離為,求點到右焦點的距離.

查看答案和解析>>

同步練習冊答案