在空間中,下列命題正確的是


  1. A.
    三點確定一個平面
  2. B.
    四邊形一定是平面圖形
  3. C.
    三條平行的直線共面
  4. D.
    梯形是平面圖形
D
分析:若三點共線,則這三個點就不能確定一個平面;四邊形有兩種:空間四邊形和平面四邊形;三條平行的直線不一定共面,
故C不成立;梯形中因為有一組對邊平等,故梯形是平面圖形.
解答:若三點共線,則這三個點就不能確定一個平面,
故A不成立;
∵四邊形有兩種:空間四邊形和平面四邊形,
∴四邊形不一定是平面圖形,
故B不成立;
三條平行的直線不一定共面,
故C不成立;
梯形中因為有一組對邊平等,
∴梯形是平面圖形,
故D成立.
故選D.
點評:本題考查平面的基本性質(zhì)及其推論,是基礎題.解題時要結合立體幾何的定理、公理、推論對所給命題逐一進行驗證.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

6、有下列四個命題:
①在空間中,若OA∥OA′,OB∥OB′,則∠AOB=∠A′O′B′;
②直角梯形是平面圖形;
③{正四棱柱}⊆直平行六面體}⊆{長方體};
④在四面體P-ABC中,PA⊥BC,PB⊥AC,則點A在平面PBC內(nèi)的射影恰為△PBC的垂心,其中逆否命題為真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題:①在空間中,若OA∥O'A',OB∥O'B',則∠AOB=∠A'O'B';
②直角梯形是平面圖形;
③{長方體}⊆{正四棱柱}⊆{直平行六面體}; 
④若a、b是兩條異面直線,a?平面α,a∥平面β,b∥平面α,則α∥β;
⑤在四面體P-ABC中,PA⊥BC,PB⊥AC,則點A在面PBC內(nèi)的射影為△PBC的垂心,其中真命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:江西省師大附中2012屆高三上學期期中考試數(shù)學理科試題 題型:013

有下列命題:

①在空間中,若OA∥,OB∥則∠AOB=∠;

②直角梯形是平面圖形;

③{長方體}{正四棱柱}{直平行六平體};

④若a、b是兩條異面直線,a平面α,a∥平面β,b∥平面α,則α∥β;

⑤在四面體P-ABC中,PA⊥BC,PB⊥AC,則點A在面PBC內(nèi)的射影為△PBC的垂心,其中真命題的個數(shù)是

[  ]
A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

有下列四個命題:
①在空間中,若OA∥OA′,OB∥OB′,則∠AOB=∠A′O′B′;
②直角梯形是平面圖形;
③{正四棱柱}⊆直平行六面體}⊆{長方體};
④在四面體P-ABC中,PA⊥BC,PB⊥AC,則點A在平面PBC內(nèi)的射影恰為△PBC的垂心,其中逆否命題為真命題的個數(shù)是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省攀枝花七中高三(下)4月月考數(shù)學試卷(理科)(解析版) 題型:選擇題

有下列四個命題:
①在空間中,若OA∥OA′,OB∥OB′,則∠AOB=∠A′O′B′;
②直角梯形是平面圖形;
③{正四棱柱}⊆直平行六面體}⊆{長方體};
④在四面體P-ABC中,PA⊥BC,PB⊥AC,則點A在平面PBC內(nèi)的射影恰為△PBC的垂心,其中逆否命題為真命題的個數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案