是否存在常數(shù)a,b使等式對于一切n∈N*都成立?若存在,求出a,b的值,若不存在,請說明理由。
詳見解析.

試題分析:先假設(shè)存在符合題意的常數(shù)a,b,c,再令n=1,n=2,n=3構(gòu)造三個方程求出a,b,c,再用用數(shù)學(xué)歸納法證明成立,證明時先證:(1)當n=1時成立.(2)再假設(shè)n=k(k≥1)時,成立,遞推到n=k+1時,成立即可.
試題解析:解:若存在常數(shù)a,b使得等式成立,將n=1,n=2代入等式
有:
即有:          4分
對于n為所有正整數(shù)是否成立,再用數(shù)學(xué)歸納法證明
證明:(1)當n=1時,等式成立。                5分
(2)假設(shè)n=k時等式成立,即
          7分
當n=k+1時,即
           11分
也就是說n=k+1時,等式成立,
由(1)(2)可知等式對于任意的n∈N*都成立。            12分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x-xlnx,數(shù)列{an}滿足0<a1<1,an+1=f(an).求證:
(1)函數(shù)f(x)在區(qū)間(0,1)是增函數(shù);
(2)an<an+1<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明對n∈N都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明:++…+= (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a>0,b>0,c>0,證明三個數(shù)
ab+1
b
bc+1
c
,
ca+1
a
中至少有一個不小于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項公式bn;
(2)設(shè)數(shù)列{an}的通項an=loga(其中a>0且a≠1).記Sn是數(shù)列{an}的前n項和,試比較Snlogabn+1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明等式時,第一步驗證時,左邊應(yīng)取的項是
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明:“”,在驗證時,左邊計算的值=___.

查看答案和解析>>

同步練習(xí)冊答案