5.在數(shù)列{an}中,已知a1=2,an+1=an+n+1,則a10=56.

分析 利用“累加求和”方法、等差數(shù)列的求和公式即可得出.

解答 解:∵an+1=an+n+1,即an+1-an=n+1,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=n+(n-1)+…+2+2
=$\frac{n(n+1)}{2}$+1,
則a10=$\frac{10×11}{2}$+1=56.
故答案為:56.

點(diǎn)評 本題考查了“累加求和”方法、等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(x2+ax-2a-3)ex,其中a∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x∈[0,1]時(shí),若函數(shù)f(x)的圖象恒在直線y=e的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A(2,3),B(-1,5),且$\overrightarrow{AC}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AD}$=3$\overrightarrow{AB}$,則$\overrightarrow{CD}$的坐標(biāo)為(-8,$\frac{16}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知z=a+bi(a、b∈R,i是虛數(shù)單位,$\overline{z_1}$是z的共軛復(fù)數(shù)),z1,z2∈C,定義D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.現(xiàn)有三個(gè)命題:
①D(${\overline{z_1}}$)=D(z1);       ②D(z1,z2)=D(z2,z1);      ③λD(z1,z2)=D(λz1,λz2).
其中為真命題的是( 。
A.①②③B.①③C.②③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(1-2x)4展開式中第3項(xiàng)的二項(xiàng)式系數(shù)為( 。
A.6B.-6C.24D.-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2x-1的值是否可以同時(shí)大于x-5和3x+1的值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知橢圓:$\frac{{x}^{2}}{9}$+y2=1,過左焦點(diǎn)F作傾斜角為$\frac{π}{6}$的直線交橢圓A、B兩點(diǎn),求弦AB的長;
(2)已知橢圓4x2+y2=1及直線y=x+m,若直線被橢圓截得的弦長為$\frac{2\sqrt{10}}{5}$,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=ax2-(2a-1)x-lnx,其中a∈R.
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[$\frac{1}{2}$,1]上的最小值;
(Ⅲ)記函數(shù)y=f(x)的圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上不同的兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N,試判斷曲線C在N處的切線是否平行于直線AB?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\frac{x+1}{{e}^{x}}$.
(1)求函數(shù)y=f(x)最值;
(2)若f(x1)=f(x2)(x1≠x2),求證:x1+x2>O.

查看答案和解析>>

同步練習(xí)冊答案