18.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則向量$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 根據(jù)條件進(jìn)行向量數(shù)量積的運(yùn)算便可得出$4+2cos<\overrightarrow{a},\overrightarrow>=5$,從而得出向量$\overrightarrow{a},\overrightarrow$夾角的余弦值.

解答 解:根據(jù)條件,$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)={\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow$=$4+2•1cos<\overrightarrow{a},\overrightarrow>=5$;
∴$cos<\overrightarrow{a},\overrightarrow>=\frac{1}{2}$.
故選:C.

點(diǎn)評 考查向量數(shù)量積的運(yùn)算及計算公式,向量夾角的概念.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C的對稱軸為坐標(biāo)軸,一個焦點(diǎn)為F(0,-$\sqrt{2}}$),點(diǎn)M(1,$\sqrt{2}}$)在橢圓C上
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:2x-y-2=0與橢圓C交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.拋物線y2=4x的準(zhǔn)線方程為x=-1,經(jīng)過此拋物線的焦點(diǎn)和點(diǎn)M(3,1),且與準(zhǔn)線相切的圓共有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.觀察下列等式
$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i=cos$\frac{π}{3}$+isin$\frac{π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=cos$\frac{2π}{3}$+isin$\frac{2π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)3=cosπ+isinπ,
($\frac{1}{2}$+$\frac{\sqrt{4}}{2}$i)4=cos$\frac{4π}{3}$+isin $\frac{4π}{3}$,

照此規(guī)律,可以推測對于任意的n∈N*,($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)n=cos$\frac{n}{3}$π+isin$\frac{n}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在公比大于1的等比數(shù)列{an}中,a3a7=8,a2+a8=9,則a12=( 。
A.32B.24C.16D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=m+logax(a>0且a≠1)的圖象過點(diǎn)(16,3)和(1,-1).
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=2f(x)-f(x-1),求 g(x)的最小值及取得最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=x3+x在點(diǎn)A(1,2)的切線方程為( 。
A.4x-y+2=0B.4x-y-2=0C.4x+y+2=0D.4x+y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將十位制389化成四進(jìn)位制數(shù)是12011(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤m+1}若B⊆A,則m的取值范圍$[-\frac{1}{2},+∞)$.

查看答案和解析>>

同步練習(xí)冊答案