18.?dāng)?shù)列{an}的通項公式是an=(-1)n(3n-2),則該數(shù)列的前100項之和為( 。
A.-200B.-150C.200D.150

分析 由an=(-1)n(3n-2),可得a2k-1+a2k=-(3n-2)+(3n+1)=3.利用“分組求和”即可得出.

解答 解:∵an=(-1)n(3n-2),
∴a2k-1+a2k=-(3n-2)+(3n+1)=3.
∴S100=(-1+4)+(-7+10)+…+(-295+298)
=3×50=150.
故選:D.

點評 本題考查了“分組求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某農(nóng)戶計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室外,沿左、右兩側(cè)與后側(cè)各保留1m寬的通道,沿前側(cè)保留3m的空地(如圖所示),當(dāng)矩形溫室的長和寬分別為多少時,總占地面積最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=$\sqrt{lo{g}_{\frac{1}{2}}(5x-2)}$的定義域是( 。
A.[$\frac{3}{5}$,+∞)B.($\frac{2}{5}$,+∞)C.[$\frac{2}{5}$,$\frac{3}{5}$]D.($\frac{2}{5}$,$\frac{3}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$-\frac{π}{2}<x<0,sinx+cosx=\frac{1}{5}$,則$\frac{1}{{{{cos}^2}x-{{sin}^2}x}}$=$\frac{25}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+alnx的圖象與直線l:y=-2x+c相切,切點的橫坐標(biāo)為1.
(1)求函數(shù)f(x)的表達(dá)式和直線l的方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在邊長為2的菱形ABCD中,∠BAD=120°,則$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a,b,c互不相等,設(shè)a=4,c=3,A=2C.
(Ⅰ)求cosC的值;
(Ⅱ)求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$f(x)=\frac{{a{x^2}+1}}{x+1}(a∈R)$在(1,f(1))處的切線經(jīng)過點(0,1),則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|a-b<x<a+b},B={x|x<-1或x>5}.
(1)若b=1,A⊆B,求實數(shù)a的取值范圍;
(2)若a=1,A∩B=∅,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案