16.已知角α的終邊過點P(-4m,3m),(m<0),則2sinα+cosα的值是$-\frac{2}{5}$.

分析 直接利用任意角的三角函數(shù),求解即可.

解答 解:角α的終邊為點P(-4m,3m),所以x=-4m>0,y=3m<0,r=|5m|=-5m.
sinα=$\frac{y}{r}$=$-\frac{3}{5}$.cosα=$\frac{x}{r}$=$\frac{4}{5}$,
∴2sinα+cosα=$-\frac{3}{5}×2+\frac{4}{5}=-\frac{2}{5}$.
故答案為:$-\frac{2}{5}$.

點評 本題考查任意角的三角函數(shù)的定義,基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知圓C:x2+y2-2x-4y+1=0上存在兩點關于直線l:x+my+1=0對稱,經(jīng)過點M(m,m)作圓C的切線,切點為P,則m=-1;|MP|=3..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.為了解某社區(qū)居民購買水果和牛奶的年支出費用與購買食品的年支出費用的關系,隨機調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:
購買食品的年支出費用x(萬元)2.092.152.502.842.92
購買水果和牛奶的年支出費用y(萬元)1.251.301.501.701.75
根據(jù)上表可得回歸直線方程$\hat y=\hat bx+\hat a$,其中$\hat b=0.85,\hat a=\overline y-\hat b\overline x$,據(jù)此估計,該社區(qū)一戶購買食品的年支出費用為3.00萬元的家庭購買水果和牛奶的年支出費用約為( 。
A.1.79萬元B.2.55萬元C.1.91萬元D.1.94萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.下表提供了某公司技術升級后生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的成本y(萬元)的幾組對照數(shù)據(jù):
x3456
y2.5344.5
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y對x的回歸直線方程;
(3)已知該公司技術升級前生產(chǎn)100噸A產(chǎn)品的成本為90萬元.試根據(jù)(2)求出的回歸直線方程,預測技術升級后生產(chǎn)100噸A產(chǎn)品的成本比技術升級前約降低多少萬元?
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點O,EF∥AB,EF=$\frac{1}{2}$AB,平面BCF⊥平面ABCD,BF=CF,G為BC的中點,求證:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.將正方形ABCD沿對角線BD折成直二面角后的圖形如圖所示,若E為線段BC的中點,則直線AE與平面ABD所成角的余弦為(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{6}}}{6}$C.$\frac{{\sqrt{30}}}{6}$D.$\frac{{\sqrt{15}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的離心率為$\sqrt{10}$,則其漸近線方程為( 。
A.y=±3xB.$y=±\frac{1}{2}x$C.y=±2xD.$y=±\frac{1}{3}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為A,點B(0,$\frac{\sqrt{15}}{3}$b),若線段AB的垂直平分線過右焦點F,則雙曲線C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在數(shù)列{an}中,a1=4,nan+1-(n+1)an=2n2+2n.
(Ⅰ)求證:數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是等差數(shù)列;
(Ⅱ)求數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項和Sn

查看答案和解析>>

同步練習冊答案