【題目】設(shè)A是雙曲線 的右頂點(diǎn),F(xiàn)(c,0)是右焦點(diǎn),若拋物線 的準(zhǔn)線l上存在一點(diǎn)P,使∠APF=30°,則雙曲線的離心率的范圍是(
A.[2,+∞)
B.(1,2]
C.(1,3]
D.[3,+∞)

【答案】A
【解析】解:拋物線 的準(zhǔn)線l為x=

雙曲線 的右頂點(diǎn)A(a,0),

F(c,0)是右焦點(diǎn),

設(shè)l與x軸的交點(diǎn)為H,設(shè)P( ,h),h>0,

在直角三角形PHA中,可得tan∠APH= = ,

在直角三角形PHF中,可得tan∠FPH= =

即有tan∠APF=tan(∠FPH﹣∠APH)

= = ,

即為tan30°= ,

化簡可得3c2≥4ac+4a2,

由e= 可得3e2﹣4e﹣4≥0,

解得e≥2或e≤﹣ (舍去),

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)滿足xf′(x)+f(x)= ,f(e)= ,則函數(shù)f(x)(
A.在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減
B.在(0,+∞)上單調(diào)遞增
C.在(0,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增
D.在(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是邊長為2的等邊三角形,E是BC的中點(diǎn).
(1)求證:AE∥平面PCD;
(2)記平面PAB與平面PCD的交線為l,求二面角C﹣l﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下排列的數(shù)是二項(xiàng)式系數(shù)在三角形中的幾何排列,在我國南宋數(shù)學(xué)家楊輝1261年所著 的《詳解九章算法》一書里就出現(xiàn)了.在歐洲,這個(gè)表叫做帕斯卡三角形,它出現(xiàn)要比楊輝遲393年. 那么,第2017行第2016個(gè)數(shù)是(

A.2016
B.2017
C.2033136
D.2030112

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=exa﹣ln(x+a).
(1)當(dāng) 時(shí),求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)a≤1時(shí),證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱ABC﹣A1B1C1中,側(cè)棱 ,AB=2,D,E分別為棱AC,B1C1的中點(diǎn),M,N分別為線段AC1和BE的中點(diǎn).
(1)求證:直線MN∥平面ABC;
(2)求二面角C﹣BD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從雙曲線 =1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T,延長FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|﹣|MT|等于(
A.c﹣a
B.b﹣a
C.a﹣b
D.c﹣b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)解不等式f(x)≤5;
(2)若f(x)+m≠0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)x∈R,均有f(x)>f′(x),則有(
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

同步練習(xí)冊答案