A. | ($\sqrt{3}$-1)R | B. | $\frac{2-\sqrt{3}}{2}$R | C. | (2-$\sqrt{3}$)R | D. | $\frac{\sqrt{3}-1}{2}$R |
分析 先畫出過正方體對角面的截面圖,設小球的半徑r,通過AS=AO1+O1S建立等式,求出r即可求出要使流出來的水量最多時這個鐵球的半徑.
解答 解:過正方體對角面的截面圖如圖所示,設兩球的交點為S,
AC1=2$\sqrt{3}$R,AO=$\sqrt{3}$Q,AS=AO-OS=($\sqrt{3}$-1)R,
設小球的半徑r,tan∠C1AC=$\frac{\sqrt{2}}{2}$.
在△AO1D中,AO1=$\sqrt{3}$r,
∴AS=AO1+O1S,
∴($\sqrt{3}$-1)R=$\sqrt{3}$r+r.
解得:r=(2-$\sqrt{3}$)R為所求.
要使流出來的水量最多,這個鐵球的半徑應該為(2-$\sqrt{3}$)R.
故選:C.
點評 本題考查球與多面體相切問題,解決此類問題必須做出正確的截面(即截面一定要過球心),再運用幾何知識解出所求量.
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{1}{10}$,10] | B. | ($\frac{1}{10}$,10) | C. | [$\frac{1}{10}$,1)∪(1,10] | D. | ($\frac{1}{10}$,10] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | π | B. | $\frac{32\sqrt{3}}{27}$π | C. | $\frac{3}{4}$π | D. | $\frac{32}{27}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$π | B. | $\frac{2\sqrt{2}}{3}$π | C. | $\frac{4\sqrt{2}}{3}$π | D. | $\frac{8\sqrt{2}}{3}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若向量$\overrightarrow a$,$\overrightarrow b$共線則向量$\overrightarrow a$,$\overrightarrow b$的方向相同 | |
B. | 若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$則$\overrightarrow a$∥$\overrightarrow c$ | |
C. | 向量$\overrightarrow{AB}$與向量$\overrightarrow{CD}$是共線向量則A,B,C,D四點在一條直線上 | |
D. | 若$\overrightarrow a$=$\overrightarrow b$,$\overrightarrow b$=$\overrightarrow c$則$\overrightarrow a$=$\overrightarrow c$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | i>40,n=n+1 | B. | i>20,n=n+2 | C. | i>40,n=n+2 | D. | i=20,n=n+2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com