求值:
(1)[-2×(
2
3
0]2×(-23)
4
3
+10(2-
3
-1+8
2
3
-
300

(2)|(
4
9
)
1
2
-lg5|-
lg22-lg4+1
-31-log32
考點(diǎn):對數(shù)的運(yùn)算性質(zhì),根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運(yùn)算
專題:
分析:(1)利用指數(shù)冪的運(yùn)算法則即可得出;
(2)利用對數(shù)的運(yùn)算法則、絕對值的意義即可得出.
解答: 解:(1)原式=[-2×1]2×24+
10
2-
3
+2
2
3
-10
3

=4×16+10(2+
3
)
+4-10
3

=88.
(2)原式=|(
2
3
)
1
2
-lg5|
-|1-lg2|-
3
3log32

=lg5-
2
3
-(1-lg2)-
3
2

=-
13
6
點(diǎn)評:本題考查了指數(shù)冪的運(yùn)算法則、對數(shù)的運(yùn)算法則、絕對值的意義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某考察團(tuán)對全國10大城市職工的人均平均工資x與居民人均消費(fèi)y進(jìn)行統(tǒng)計(jì)調(diào)查,y與x具有相關(guān)關(guān)系,回歸方程
y
=0.6x+1.5 (單位:千元),若某城市居民的人均消費(fèi)額為7.5千元,估計(jì)該城市人均消費(fèi)額占人均工資收入的百分比為( 。
A、66%B、72.3%
C、75%D、83%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
2
2x+1
(a∈R),
(Ⅰ)用單調(diào)性的定義證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù),若存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是偶函數(shù),且在(0,2)內(nèi)單調(diào)遞增的是( 。
A、y=x2-2x
B、y=cosx+1
C、y=lg|x|+2
D、y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-x,x≤0
x2,x>0
,若f(a)=4,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,
i3(i+1)
i-1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}前n項(xiàng)和為Sn,a1=1,Sn+1=4an+2
(1)令bn=an+1-2an,證明:{bn}為等比數(shù)列;
(2)令Cn=
an
2n-1
,求Cn及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的函數(shù),且滿足f(1)=5,對任意實(shí)數(shù)x都有f′(x)<3,則不等式f(x)<3x+2的解集為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,且an+1=2nan,求an

查看答案和解析>>

同步練習(xí)冊答案