A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 利用橢圓、雙曲線、圓的定義,即可得出結(jié)論.
解答 解:對于①,若4-t>0,t-1>0且4-t≠t-1,解得1<t<4且t≠$\frac{5}{2}$,則曲線C為橢圓,因此不正確;
對于②,若曲線C為雙曲線,則(4-t)(t-1)<0,解得t<1或t>4,正確;
對于③,當(dāng)4-t=t-1>0,即t=$\frac{5}{2}$時,曲線C表示圓,因此不正確;
對于④,若曲線C為焦點在x軸上的橢圓,則4-t>t-1>0,解得1<t<$\frac{5}{2}$,正確.
故選:B.
點評 本題考查了分類討論的思想方法,考查了橢圓雙曲線圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{2}}}{4}$ | B. | $-\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com