【題目】已知函數(shù),.
(1)若函數(shù)在區(qū)間上單調(diào)遞減,試探究函數(shù)在區(qū)間上的單調(diào)性;
(2)證明:方程在上有且僅有兩解.
【答案】(1)單調(diào)遞減.(2)見解析
【解析】
(1)對求導(dǎo),,再對求導(dǎo),可得遞減區(qū)間,可得的取值范圍,可得函數(shù)在區(qū)間上的單調(diào)性;
(2)令,因為,可令,對其求導(dǎo),可得的單調(diào)性和零點,記正零點為,可得的性質(zhì)及的表達式,將滿足的條件代入,綜合分析可得證明.
解:(1)依題意,,由,
故函數(shù)的遞減區(qū)間為;而當(dāng)時,
故若函數(shù)在區(qū)間上單調(diào)遞減,
函數(shù)在區(qū)間上也是單調(diào)遞減.
(2)令,
因為,由得,
令,則,
因為,且,所以必有兩個異號的零點,記正零點為,
則時,,單調(diào)遞減;時,,單調(diào)遞增,若在上恰有兩個零點,則,
由得,
所以,又因為的對稱軸為,
所以,
所以,所以,
又,
設(shè)中的較大數(shù)為,則,
故當(dāng)時,方程在上有且僅有兩解.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.
(1)求曲線的普通方程和極坐標方程;
(2)設(shè)直線與曲線交于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場上影響力不斷增大.動力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動新能源汽車發(fā)展的主要動力.假定現(xiàn)在市售的某款新能源汽車上,車載動力蓄電池充放電循環(huán)次數(shù)達到2000次的概率為85%,充放電循環(huán)次數(shù)達到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(k為常數(shù),且).
(1)在下列條件中選擇一個________使數(shù)列是等比數(shù)列,說明理由;
①數(shù)列是首項為2,公比為2的等比數(shù)列;
②數(shù)列是首項為4,公差為2的等差數(shù)列;
③數(shù)列是首項為2,公差為2的等差數(shù)列的前n項和構(gòu)成的數(shù)列.
(2)在(1)的條件下,當(dāng)時,設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為:(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為:.
(Ⅰ)求直線與曲線公共點的極坐標;
(Ⅱ)設(shè)過點的直線交曲線于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,離心率為的橢圓的左頂點為,過原點的直線(與坐標軸不重合)與橢圓交于兩點,直線分別與軸交于, 兩點.若直線斜率為 時, .
(1)求橢圓的標準方程;
(2)試問以為直徑的圓是否經(jīng)過定點(與直線的斜率無關(guān))?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若.
①求實數(shù)的值;
②若,證明為極值點;
(2)求實數(shù)的取值范圍,使得對任意的恒有成立.(注:為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大約在20世紀30年代,世界上許多國家都流傳著這樣一個題目:任取一個正整數(shù),如果它是偶數(shù),則除以2;如果它是奇數(shù),則將它乘以3加1,這樣反復(fù)運算,最后結(jié)果必然是1.這個題目在東方被稱為“角谷猜想”,世界一流的大數(shù)學(xué)家都被其卷入其中,用盡了各種方法,甚至動用了最先進的電子計算機,驗算到對700億以內(nèi)的自然數(shù)上述結(jié)論均為正確的,但卻給不出一般性的證明.例如取,則要想算出結(jié)果1,共需要經(jīng)過的運算步數(shù)是( )
A.9B.10C.11D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,是的中點,以為折痕將向上折起,變?yōu)?/span>,且平面平面.
(1)求三棱錐的體積;
(2)求證:;
(3)求證:平面平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com