【題目】通過隨機詢問150名大學生是否參加某社團活動,得到如下的列聯(lián)表:

總計

參加

55

25

80

不參加

30

40

70

總計

85

65

150

附表:

P(K2≥k0)

0.05

0.010

0.001

k0

3.841

6.635

10.828

參照附表,得到的正確的結(jié)論是(  )

A. 在犯錯的概率不超過0.1%的前提下,認為“是否參加該社團活動與性別無關(guān)”

B. 在犯錯的概率不超過0.1%的前提下,認為“是否參加該社團活動與性別有關(guān)”

C. 有99%以上的把握認為“是否參加該社團活動與性別有關(guān)”

D. 有99%以上的把握認為“是否參加該社團活動與性別無關(guān)”

【答案】C

【解析】

先計算卡方,由觀測值得出結(jié)論

由表中數(shù)據(jù)求得K2的觀測值k≈10.19,由10.19>6.635知,有99%以上的把握認為“是否參加該社團活動與性別有關(guān)”.故選C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】命題“若x2+y2=0,則x=y(tǒng)=0”的否命題是(  )

A. 若x2+y2=0,則x,y中至少有一個不為0

B. 若x2+y2≠0,則x,y中至少有一個不為0

C. 若x2+y2≠0,則x,y都不為0

D. 若x2+y2=0,則x,y都不為0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“|x|<2”是“x2﹣x﹣6<0”的(
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了確定某類種子的發(fā)芽率,從一大批種子中抽出若干粒進行發(fā)芽試驗,其結(jié)果如下表:

種子粒數(shù)n

25

70

130

700

2 015

3 000

4 000

發(fā)芽粒數(shù)m

24

60

116

639

1 819

2 713

3 612


(1)計算各批種子的發(fā)芽頻率;(保留三位小數(shù))
(2)怎樣合理地估計這類種子的發(fā)芽率?(保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列幾個命題:

①在圓柱的上、下底面的圓周上各取一點,則這兩點的連線是圓柱的母線;

②底面為正多邊形,且有相鄰兩個側(cè)面與底面垂直的棱柱是正棱柱;

③棱臺的上、下底面可以不相似,但側(cè)棱長一定相等.

其中正確命題的個數(shù)是(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】總體由編號為01,02,…,19,20的20個個體組成。利用下面的隨機數(shù)表選取7個個體,選取方法是從隨機數(shù)表第1行的第3列和第4列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第6個個體的編號為( )

7816 6572 0802 6314 0702 4369 9728 0198

3204 9234 4935 8200 3623 4869 6938 7481

A. 08 B. 07 C. 01 D. 06

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列兩個變量之間的關(guān)系不是函數(shù)關(guān)系的是( )

A. 出租車車費與出租車行駛的里程

B. 商品房銷售總價與商品房建筑面積

C. 鐵塊的體積與鐵塊的質(zhì)量

D. 人的身高與體重

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4個不同的球,4個不同的盒子,把球全部放入盒內(nèi).

1恰有1個盒不放球,共有幾種放法?

2恰有1個盒內(nèi)有2個球,共有幾種放法?

3恰有2個盒不放球,共有幾種放法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】開門大吉是某電視臺推出的游戲節(jié)目。選手面對號8扇大門,依次按響門上的門鈴,

門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,

方可獲得該扇門對應的家庭夢想基金在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個年齡段:

,(單位:歲),統(tǒng)計這兩個年齡段選手答對歌曲名稱與否的人數(shù)如下圖所示

)寫出列聯(lián)表,并判斷是否有的把握認為答對歌曲名稱與否和年齡有關(guān),說明你的理由。(下

面的臨界值表供參考)

0.1

0.05

0.01

0.005

2.706

3.841

6.635

7.879

)在統(tǒng)計過的參賽選手中按年齡段分層選取9名選手,并抽取3名幸運選手,求3名幸運選手中在

歲年齡段的人數(shù)的分布列和數(shù)學期望。

參考公式:,其中

查看答案和解析>>

同步練習冊答案