【題目】如圖,四邊形ABCD為直角梯形,試作出繞其各條邊所在的直線旋轉所得到的幾何體.

【答案】見解析

【解析】

確定旋轉直線,根據(jù)其余各邊與旋轉直線的關系,結合圓柱、圓錐、圓臺定義,即可求出結論.

以邊AD所在直線為軸旋轉,形成的幾何體是一個圓臺,

如圖(1)所示.

以邊AB所在直線為軸旋轉,形成的幾何體可以看作是由

一個圓錐和一個圓柱拼接而成的組合體,如圖(2)所示.

以邊CD所在直線為軸旋轉,形成的幾何體可以看作是由

一個圓柱挖去一個同底圓錐而成的組合體,如圖(3)所示.

以邊BC所在直線為軸旋轉,形成的幾何體可以看作是由

一個圓臺挖去一個同底(上底面)圓錐后再和一個同底(下底面)

圓錐拼接而成的組合體,如圖(4)所示.

1 2 3 4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的首項,前n項和滿足

(1)求數(shù)列的通項公式;

(2)若數(shù)列是公比為4的等比數(shù)列,且,也是等比數(shù)列,若數(shù)列單調(diào)遞增,求實數(shù)的取值范圍;

(3)若數(shù)列、都是等比數(shù)列,且滿足,試證明: 數(shù)列中只存在三項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡和智能手機的普及與快速發(fā)展,許多可以解答各學科問題的搜題軟件走紅.有教育工作者認為:網(wǎng)搜答案可以起到拓展思路的作用,但是對多數(shù)學生來講,容易產(chǎn)生依賴心理,對學習能力造成損害.為了了解網(wǎng)絡搜題在學生中的使用情況,某校對學生在一周時間內(nèi)進行網(wǎng)絡搜題的頻數(shù)進行了問卷調(diào)查,并從參與調(diào)查的學生中抽取了男、女學生各人進行抽樣分析,得到如下樣本頻數(shù)分布表:

一周時間內(nèi)進行網(wǎng)絡搜題的頻數(shù)區(qū)間

男生頻數(shù)

女生頻數(shù)

18

4

10

8

12

13

6

15

4

10

將學生在一周時間內(nèi)進行網(wǎng)絡搜題頻數(shù)超過次的行為視為“經(jīng)常使用網(wǎng)絡搜題”,不超過20次的視為“偶爾或不用網(wǎng)絡搜題”.

1)根據(jù)已有數(shù)據(jù),完成下列列聯(lián)表(單位:人)中數(shù)據(jù)的填寫,并判斷是否在犯錯誤的概率不超過%的前提下有把握認為使用網(wǎng)絡搜題與性別有關?

經(jīng)常使用網(wǎng)絡搜題

偶爾或不用絡搜題

合計

男生

女生

合計

2)將上述調(diào)查所得到的頻率視為概率,從該校所有參與調(diào)查的學生中,采用隨機抽樣的方法每次抽取一個人,抽取人,記經(jīng)常使用網(wǎng)絡搜題的人數(shù)為,若每次抽取的結果是相互獨立的,求隨機變量的分布列和數(shù)學期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面有五個命題:

①函數(shù)y=sin4x-cos4x的最小正周期是;

②終邊在y軸上的角的集合是{α|α=;

③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;

④把函數(shù)

⑤函數(shù)。

其中真命題的序號是__________(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,是等腰梯形,,,.給出下列三個命題:

平面平面

異面直線所成角的余弦值為;

直線與平面所成角的正弦值為

那么,下列命題為真命題的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,角為始邊,終邊與單位圓相交于點.過點的圓的切線交軸于點,點的橫坐標關于角的函數(shù)記為. 則下列關于函數(shù)的說法正確的( )

A. 的定義域是

B. 的圖象的對稱中心是

C. 的單調(diào)遞增區(qū)間是

D. 對定義域內(nèi)的均滿足

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項均為正數(shù)的數(shù)列的前項和為,且.

1)求證:數(shù)列不是等差數(shù)列;

2)是否存在整數(shù),使得對任意的都成立?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左焦點為F,上頂點為A,直線AF與直線 垂直,垂足為B,且點A是線段BF的中點.

(I)求橢圓C的方程;

(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線 交于點Q,且,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在圓環(huán)形路上有均勻分布的四家工廠甲乙丙丁,每家工廠都有足夠的倉庫供產(chǎn)品儲存.現(xiàn)要將所有產(chǎn)品集中到一家工廠的倉庫儲存,已知甲乙丙丁四家工廠的產(chǎn)量之比為1235.若運費與路程運的數(shù)量成正比例,為使選定的工廠倉庫儲存所有產(chǎn)品時總的運費最省,應選的工廠是( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案