3.若方程$\frac{{x}^{2}}{10-k}$+$\frac{{y}^{2}}{5-k}$=1表示雙曲線,則k的取值范圍是( 。
A.(5,10)B.(-∞,5)C.(10,+∞)D.(-∞,5)∪(10,+∞)

分析 根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程的形式分析可得(10-k)與(5-k)異號(hào),即可得(10-k)(5-k)<0,解可得k的范圍,即可得答案.

解答 解:根據(jù)題意,方程$\frac{{x}^{2}}{10-k}$+$\frac{{y}^{2}}{5-k}$=1表示雙曲線,
必有(10-k)與(5-k)異號(hào),
即有(10-k)(5-k)<0,
解可得5<k<10,
即k的取值范圍是(5,10);
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程,關(guān)鍵是注意雙曲線標(biāo)準(zhǔn)方程的形式,即二元二次方程在什么條件下表示雙曲線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下面各組函數(shù)中為相同函數(shù)的是( 。
A.$f(x)=\sqrt{{{(x-1)}^2}},g(x)=x-1$B.f(x)=x0,g(x)=1
C.$f(x)={3^x},g(x)={(\frac{1}{3})^{-x}}$D.$f(x)=x-1,g(x)=\frac{{{x^2}-1}}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線l1與圓心為C的圓(x-1)2+(y-2)2=4相交于不同的A,B兩點(diǎn),對(duì)平面內(nèi)任意點(diǎn)Q都有$\overrightarrow{QC}=λ\overrightarrow{QA}+(1-λ)\overrightarrow{QB}$,λ∈R,又點(diǎn)P為直線l2:3x+4y+4=0上的動(dòng)點(diǎn),則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值為( 。
A.21B.9C.5D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)g(x)=x2-(m-1)x+m-7.
(1)若函數(shù)g(x)在[2,4]上具有單調(diào)性,求實(shí)數(shù)m的取值范圍;
(2)若在區(qū)間[-1,1]上,函數(shù)y=g(x)的圖象恒在y=2x-9圖象上方,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中點(diǎn).
(1)求證:A1C∥平面BED;
(2)求二面角E-BD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某學(xué)校為調(diào)查高三年學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數(shù)有16人.

(Ⅰ)試問(wèn)在抽取的學(xué)生中,男、女生各有多少人?
(Ⅱ)在上述80名學(xué)生中,從身高在170~175cm之間的學(xué)生中按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.根據(jù)下列條件,解三角形.
(Ⅰ)已知 b=4,c=8,B=30°,求C,A,a;
(Ⅱ)在△ABC中,B=45°,C=75°,b=2,求a,c,A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)f(x)=2ax2+2bx,若存在實(shí)數(shù)x0∈(0,t),使得對(duì)任意不為零的實(shí)數(shù)a,b均有f(x0)=a+b成立,則t的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0.+∞)上單調(diào)遞增的函數(shù)是( 。
A.y=1nxB.y=x3C.y=2|x |D.y=-x

查看答案和解析>>

同步練習(xí)冊(cè)答案