【題目】如圖所示,已知橢圓 的長軸為,過點(diǎn)的直線軸垂直,橢圓上一點(diǎn)與橢圓的長軸的兩個(gè)端點(diǎn)構(gòu)成的三角形的最大面積為2,且橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2) 設(shè)是橢圓上異于, 的任意一點(diǎn),連接并延長交直線于點(diǎn), 點(diǎn)為的中點(diǎn),試判斷直線與橢圓的位置關(guān)系,并證明你的結(jié)論.

【答案】(1)(2)直線與橢圓相切于點(diǎn),證明見解析

【解析】試題分析: 根據(jù)條件和離心率公式可以求得, ,即可求出橢圓的標(biāo)準(zhǔn)方程; 設(shè),由的坐標(biāo)求得直線的方程,得到點(diǎn)的坐標(biāo),又因?yàn)?/span>

中點(diǎn),求出的坐標(biāo),得到直線的方程,聯(lián)立橢圓方程,利用判別式求得結(jié)論

解析:(1)依題設(shè)條件可得: .又,解得, ,所以橢圓的標(biāo)準(zhǔn)方程為.

(2)直線與橢圓相切于點(diǎn).證明如下:

設(shè)點(diǎn),又,所以直線的方程為.令,得,即點(diǎn).又點(diǎn), 中點(diǎn),所以.

于是直線的方程為 ,即 .

因?yàn)?/span>,所以,所以 ,整理得到,由消去并整理得到: ,即,此方程的判別式,所以直線與橢圓相切于點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中東呼吸綜合征(簡稱MERS)是由一種新型冠狀病毒(MERS﹣CoV)引起的病毒性呼吸道疾。刂2015年6月1日,韓國中東呼吸綜合征感染者有43人,6月2日,韓國中東呼吸綜合征感染者新增2人,3日起每天的新感染者平均比前一天的新感染者增加1人.由于醫(yī)療部門采取措施,MERS病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染者減少1人,到6月20日止,MERS的患者共有180人,問6月幾日感染MERS的新患者人數(shù)最多?并求這一天的新患者人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究“在n次獨(dú)立重復(fù)試驗(yàn)中,事件A恰好發(fā)生k次的概率的和”這個(gè)課題,我們可以分三步進(jìn)行研究:(I)取特殊事件進(jìn)行研究;(Ⅱ)觀察分析上述結(jié)果得到研究結(jié)論;(Ⅲ)試證明你得到的結(jié)論,F(xiàn)在,請(qǐng)你完成:

(1)拋擲硬幣4次,設(shè)分別表示正面向上次數(shù)為0次,1次,2次,3次,4次的概率,求 (用分?jǐn)?shù)表示),并求;

(2)拋擲一顆骰子三次,設(shè)分別表示向上一面點(diǎn)數(shù)是3恰好出現(xiàn)0次,1次,2次,3次的概率,求 (用分?jǐn)?shù)表示),并求;

(3)由(1)、(2)寫出結(jié)論,并對(duì)得到的結(jié)論給予解釋或給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1 , F2在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)若P是橢圓C上第一象限內(nèi)的點(diǎn),△PF1F2的內(nèi)切圓的圓心為I,半徑為 .求:
(i)點(diǎn)P的坐標(biāo);
(ii)直線PI的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.

(Ⅰ)求證:AC⊥平面ABB1A1;

(Ⅱ)求點(diǎn)D到平面ABC1的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的半焦距為,左焦點(diǎn)為,右頂點(diǎn)為,拋物線與橢圓交于兩點(diǎn),若四邊形是菱形,則橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn).

(1)求證:PA∥平面EDB;
(2)求銳二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.

(1)求證:面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .

1)當(dāng)時(shí), 上恒成立,求實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),若函數(shù)上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案