過拋物線y2=ax 的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),如果x1+x2=8且|AB|=10,則a=
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得a>0,然后直接由拋物線的焦點(diǎn)弦長(zhǎng)公式結(jié)合已知求得a的值.
解答: 解:由拋物線方程y2=ax,且拋物線上兩點(diǎn)A(x1,y1),B(x2,y2)滿足x1+x2=8,
可知a>0,即2p=a>0,∴p=
a
2
>0

由拋物線的焦點(diǎn)弦公式得:|AB|=x1+x2+p,
∵x1+x2=8且|AB|=10,
∴10=8+p,即p=2,
a
2
=2
,a=4.
故答案為:4.
點(diǎn)評(píng):本題考查了拋物線的簡(jiǎn)單幾何性質(zhì),考查了拋物線的焦點(diǎn)弦長(zhǎng)公式,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3x-2
x2-2x+1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)是奇函數(shù)且滿足f(3+x)=f(x),f(2)=-5,數(shù)列{an}滿足a1=-1,且Sn=2an+n(其中Sn為{an}的前n項(xiàng)和),則f(a4)+f(a5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=1,AB=2,∠A的平分線AD=
6
2
,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p對(duì)應(yīng)集合A,命題q對(duì)應(yīng)集合B,若p是q的必要條件,則A?B.
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2|ex-ea|-
ex
x
+ea,x∈(0,1],a∈R

(1)當(dāng)a≥1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a∈(0,1)時(shí),求函數(shù)f(x)的最大值的表達(dá)式M(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=
1
2
BC,E是底邊BC上的一點(diǎn),且EC=3BE.現(xiàn)將△CDE沿DE折起到△C1DE的位置,得到如圖2所示的四棱錐C1-ABED,且C1A=AB.
(1)求證:C1A⊥平面ABED;
(2)若M是棱C1E的中點(diǎn),求直線BM與平面C1DE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)由x-ln[f(x)+1]=0確定,則導(dǎo)函數(shù)y=f′(x)圖象的大致形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列中{an}中,an+1=
2an
2+an
,a1=1,則a5=(  )
A、
2
5
B、
1
3
C、
2
3
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案