已知x∈(0,
π
2
),化簡(jiǎn):
1+2sin
x
2
cos
x
2
+
1-2sin
x
2
cos
x
2
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:由角的范圍可推出sinθ<cosθ,以及sinθ+cosθ<0,化簡(jiǎn)要求的式子,求得最簡(jiǎn)結(jié)果即可.
解答: 解:x∈(0,
π
2
),∴
x
2
(0,
π
4
)
,cos
x
2
>sin
x
2

1+2sin
x
2
cos
x
2
+
1-2sin
x
2
cos
x
2

=sin
x
2
+cos
x
2
+|sin
x
2
-cos
x
2
|
=sin
x
2
+cos
x
2
-sin
x
2
+cos
x
2

=2cos
x
2
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“sinx
1
2
”是“x
π
6
 
的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△AOB的頂點(diǎn)均在拋物線y2=2px(p>O)上,其中O為坐標(biāo)原點(diǎn),若△AOB的垂心恰好是拋物線的焦點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ln
1x+2x+…+(n-1)x+nxa
n
,其中a∈R,對(duì)于任意的正整數(shù)n(n≥2),如果不等式f(x)>(x-1)lnn在區(qū)間[1,+∞)上有解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2為橢圓
x2
16
+
y2
15
=1的左、右焦點(diǎn),點(diǎn)A(-2,1),若點(diǎn)P是橢圓上的一個(gè)動(dòng)點(diǎn),則|PF1|+|PA|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x2+4ax-5在D=[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面直徑為4r的圓柱內(nèi),正方放入4個(gè)半徑為r的小球,使得圓柱上下表面與小球正好相切,則圓柱的高為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(2x+φ)(|φ<
π
2
|)的圖象向左平移
π
6
個(gè)單位后關(guān)于原點(diǎn)對(duì)稱(chēng),求函數(shù)f(x)在[0,
π
2
]上的最小值為(  )
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為非零實(shí)數(shù),若a>b且ab>0,則下列不等式成立的是( 。
A、a2>b2
B、
b
a
a
b
C、ab2>a2b
D、
1
a2b
1
ab2

查看答案和解析>>

同步練習(xí)冊(cè)答案