16.用系統(tǒng)抽樣方法從編號為1,2,3,…,700的學生中抽樣50人,若第2段中編號為20的學生被抽中,則第5段中被抽中的學生編號為( 。
A.48B.62C.76D.90

分析 根據(jù)系統(tǒng)抽樣的方法的要求,確定抽取間隔即可得到結(jié)論.

解答 解:因為是從700名學生中抽出50名學生,
組距是14,
∵第2段中編號為20的學生被抽中,
∴第5組抽取的為20+3×14=62號,
故選B.

點評 本題考查系統(tǒng)抽樣的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意熟練掌握系統(tǒng)抽樣的概念.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=sin($\frac{π}{2}$x+φ)(|φ|<$\frac{π}{2}$)的部分圖象如圖所示,其中P是圖象的最高點,A、B是圖象與x軸的交點,則tan∠APB=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知下列命題:
①有兩個側(cè)面是矩形的四棱柱是直四棱柱;
②若一個三棱錐三個側(cè)面都是全等的等腰三角形,則此三棱錐是正三棱錐;
③已知f(x)的定義域為[-2,2],則f(2x-3)的定義域為[1,3];
④設(shè)函數(shù)y=f(x)定義域為R,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于直線x=1對稱;
⑤已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x≤2}\\{-\frac{1}{2}x+2,x>2}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(2,4)
其中正確的是④⑤.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設(shè)F1,F(xiàn)2為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{2}=1$的兩個焦點,已知點P在此雙曲線上,且$∠{F_1}P{F_2}=\frac{π}{3}$.若此雙曲線的離心率等于$\frac{{\sqrt{6}}}{2}$,則點P到y(tǒng)軸的距離等于2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.若A={x|-3≤x≤4},B={x|-1≤x≤m+1},B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x)=x3+(a-1)x2是奇函數(shù),則不等式f(ax)>f(a-x)的解集是{x|x>$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)的圖象如圖所示,則函數(shù)g(x)=log${\;}_{\frac{1}{2}}$f(x)的單調(diào)遞增區(qū)間為( 。
A.(-∞,0)B.(4,+∞)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.閱讀如下程序框圖,如果輸出i=1008,那么空白的判斷框中應(yīng)填入的條件是( 。
A.S<2014B.S<2015C.S<2016D.S<2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某人開車去上班,開始勻速前行,后來為了趕時間加速前行,則下列圖象與描述的事件最吻合的是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案