19.若命題p:?x∈N,x2-3x+2>0,則¬p為( 。
A.?x∈N,x2-3x+2≤0B.?x∉N,x2-3x+2≤0C.?x∈N,x2-3x+2≤0D.?x∈N,x2-3x+2>0

分析 直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,
所以命題p:?x∈N,x2-3x+2>0,則¬p是?x∈N,x2-3x+2≤0;
故選:C

點(diǎn)評 本題考查命題的否定,特稱命題與全稱命題的關(guān)系,基本知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知長方體的長寬高分別為3,2,1,則該長方體外接球的表面積為14π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題p:若x=y=0,則x2+y2=0,如果把命題p視為原命題,那么原命題、逆命題、否命題、逆否命題四個(gè)命題中正確命題的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,且a2=2b.
(1)求橢圓的方程;
(2)若直線l:x-y+m=0與橢圓交于A,B兩點(diǎn),且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)F為拋物線y2=3x的焦點(diǎn),過F且傾斜角為30°的直線l交拋物線于A(x1,y1),B(x2,y2),則|AB|=( 。
A.10B.6C.12D.$7\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.與函數(shù)y=x是同一函數(shù)的函數(shù)是(  )
A.$y=\sqrt{x^2}$B.$y=\root{3}{x^3}$C.$y={(\sqrt{x})^2}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點(diǎn)P(2,1)在圓C:x2+y2+ax-2y+b=0上,點(diǎn)P關(guān)于直線x+y-1=0的對稱點(diǎn)也在圓C上,則圓C的圓心坐標(biāo)為( 。
A.(0,1)B.(1,0)C.(2,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在正三棱柱ABC-A1B1C1中,AB=2,M,N分別是CC1,AB的中點(diǎn).
(1)求證:CN∥平面AMB1;
(2)若二面角A-MB1-C的大小為45°,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率e=$\frac{\sqrt{2}}{2}$,過C(-1,0)點(diǎn)且斜率為1的直線l與橢圓交于A,B兩點(diǎn),且C點(diǎn)分有向線段$\overrightarrow{AB}$所成的比為3.
(1)求該橢圓方程;
(2)P,Q為橢圓上兩動(dòng)點(diǎn),滿足$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,探求$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$是否為定值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案