如果橢圓C和雙曲線C′具有相同的焦點(diǎn),且它們的離心率互為倒數(shù),則稱(chēng)橢圓C是雙曲線C′的“伴生”橢圓,據(jù)此,焦點(diǎn)在x軸上,以y=±x為漸近線,且焦點(diǎn)到漸近線距離為1的雙曲線的“伴生”橢圓的方程是________.


分析:由題意,焦點(diǎn)在x軸上,以y=±x為漸近線,且焦點(diǎn)到漸近線距離為1的雙曲線,可設(shè)其焦點(diǎn)為(±c,0),由點(diǎn)到直線的距離公式得1=,解得c=,從而得出a的值,解出雙曲線的離心率,再由定義得出橢圓的離心率,及焦點(diǎn)的坐標(biāo),由離心率公式即可解出a′=2,進(jìn)而求出b′=,寫(xiě)出橢圓的標(biāo)準(zhǔn)方程即可
解答:由題意雙曲線的焦點(diǎn)在x軸上,可設(shè)焦點(diǎn)為(±c,0),又y=±x為漸近線,且焦點(diǎn)到漸近線距離為1
∴a=b且1=,解得c=,
∴a=b=1,故此雙曲線的離心率為=
由定義知,其對(duì)應(yīng)的橢圓的離心率為
又橢圓的焦點(diǎn)(±,0),可得a′=2,從而b′=
故橢圓的標(biāo)準(zhǔn)方程為
故答案為
點(diǎn)評(píng):本題考查圓錐曲線的共同特征,考察了橢圓與雙曲線的性質(zhì),解題的關(guān)鍵是理解定義,由定義得出橢圓的參數(shù)的值,本題考察了閱讀能力及推理判斷的能力,本部分題符號(hào)計(jì)算多,運(yùn)算量大,解題時(shí)要認(rèn)真嚴(yán)謹(jǐn),避免馬虎出錯(cuò)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)B(6,0)和C(-6,0),設(shè)點(diǎn)A與B、C的連線AB、AC的斜率分別為k1,k2,如果k1k2=
1
m
,那么點(diǎn)A的軌跡一定不是下列曲線(或其一部分)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果橢圓C和雙曲線C′具有相同的焦點(diǎn),且它們的離心率互為倒數(shù),則稱(chēng)橢圓C是雙曲線C′的“伴生”橢圓,據(jù)此,焦點(diǎn)在x軸上,以y=±x為漸近線,且焦點(diǎn)到漸近線距離為1的雙曲線的“伴生”橢圓的方程是
x2
4
+
y2
2
=1
x2
4
+
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果橢圓C和雙曲線C′具有相同的焦點(diǎn),且它們的離心率互為倒數(shù),則稱(chēng)橢圓C是雙曲線C′的“伴生”橢圓,據(jù)此,焦點(diǎn)在x軸上,以y=±x為漸近線,且焦點(diǎn)到漸近線距離為1的雙曲線的“伴生”橢圓的方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省泉州市德化一中高二(下)期末數(shù)學(xué)試卷(解析版) 題型:填空題

如果橢圓C和雙曲線C′具有相同的焦點(diǎn),且它們的離心率互為倒數(shù),則稱(chēng)橢圓C是雙曲線C′的“伴生”橢圓,據(jù)此,焦點(diǎn)在x軸上,以y=±x為漸近線,且焦點(diǎn)到漸近線距離為1的雙曲線的“伴生”橢圓的方程是   

查看答案和解析>>

同步練習(xí)冊(cè)答案