【題目】已知,.
(1)求當(dāng)時(shí),的值域;
(2)若函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),求的取值范圍.
【答案】(1)的值域?yàn)?/span>;(2)或.
【解析】
試題分析:(1)當(dāng)時(shí),,令,則,,可求的值域;(2),
令,則當(dāng)時(shí),,,在內(nèi)有且只有一個(gè)零點(diǎn)等價(jià)于在內(nèi)有且只有一個(gè)零點(diǎn),無零點(diǎn).因?yàn)?/span>,∴在內(nèi)為增函數(shù),分①若在內(nèi)有且只有一個(gè)零點(diǎn),無零點(diǎn),和②若為的零點(diǎn),內(nèi)無零點(diǎn)兩種情況討論即可.
試題解析:(1)當(dāng)時(shí),,令,則,,
,當(dāng)時(shí),,當(dāng)時(shí),,所以的值域?yàn)?/span>.
(2),
令,則當(dāng)時(shí),,,
,在內(nèi)有且只有一個(gè)零點(diǎn)等價(jià)于在內(nèi)有且只有一個(gè)零點(diǎn),無零點(diǎn).因?yàn)?/span>,∴在內(nèi)為增函數(shù),①若在內(nèi)有且只有一個(gè)零點(diǎn),無零點(diǎn),故只需得;
②若為的零點(diǎn),內(nèi)無零點(diǎn),則,得,經(jīng)檢驗(yàn),符合題意.
綜上,或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關(guān)系為y1=18-,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關(guān)系為y2=(注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),且相鄰兩對稱軸間的距離為.
(Ⅰ)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(Ⅱ)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),
得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表,其中《方田》章有弧田面積計(jì)算問題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公
式為:弧田面積=,弧田是由圓弧(簡稱為弧田。┖鸵詧A
弧的兩端為頂點(diǎn)的線段(簡稱為弧田弦)圍成的平面圖形,公式中“弦”指的是弧
田弦的長,“矢”等于弧田弧所在圓的半徑與圓心到弧田弦的距離之差.現(xiàn)有一弧
田,其弦長AB等于6米,其弧所在圓為圓O,若用上述弧田面積計(jì)算公式算得該
弧田的面積為平方米,則cos∠AOB= ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中中,側(cè)面為矩形, 是的中點(diǎn), 與交于點(diǎn),且平面.
(1)證明: ;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若對恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x0,x0+是函數(shù)f(x)=cos2(wx﹣)﹣sin2wx(ω>0)的兩個(gè)相鄰的零點(diǎn)
(1)求的值;
(2)若對任意,都有f(x)﹣m≤0,求實(shí)數(shù)m的取值范圍.
(3)若關(guān)于的方程在上有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com