已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈(0,1)時,f(x)=tan
πx
2
,則f(x)在[0,5]上的零點個數(shù)是( 。
A、3B、4C、5D、6
考點:根的存在性及根的個數(shù)判斷
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可推出f(x)在[0,5]上的零點只可能在0,1,2,3,4,5這6個數(shù)中取,從而由函數(shù)的性質(zhì)一一推導(dǎo)即可.
解答: 解:∵當(dāng)x∈(0,1)時,f(x)=tan
πx
2
,
∴f(x)在(0,1)上沒有零點,
又∵函數(shù)f(x)是奇函數(shù),
∴f(x)在(-1,0)上也沒有零點,
又∵f(x+2)=f(x),
∴f(x)在[0,5]上的零點只可能在0,1,2,3,4,5這6個數(shù)中取,
∵f(0)=0;
故0,2,4是函數(shù)的零點,
又∵f(-1)=-f(1),f(-1)=f(1);
∴f(1)=0;
故1,3,5是函數(shù)的零點,
故f(x)在[0,5]上的零點個數(shù)是6;
故選D.
點評:本題考查了函數(shù)的零點的個數(shù)的判斷,同時考查了函數(shù)的性質(zhì)的綜合應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a、b、c都是實數(shù),f(x)=ax3+bx2+cx-34的導(dǎo)函數(shù)為f′(x),f′(x)≤0的解集為{x|-2≤x≤3},若f(x)的極小值等于-115,則a的值是( 。
A、-  
81
22
B、
1
3
C、2
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+ax)ex(a≠0)
(1)f(x)在x=-3處取到極值,求f(x)的單調(diào)區(qū)間;
(2)是否存在實數(shù)a是f(x)≥a2x恒成立?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用三角函數(shù)求在△ABC中,已知BC=a=6,AC=b=5,AB=c=8,則這個三角形為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2-
-x2+4x
的值域是(  )
A、[-2,2]
B、[1,2]
C、[0,2]
D、[-
2
,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓M:(x-1)2+y2=9,直線l:y=x-m,當(dāng)直線與圓相交于P、Q兩點,若在x軸上存在一點R,使得RP⊥RQ,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在銳角三角形ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(1)求證:tanA=2tanB;
(2)求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給x輸入0,y輸入1,則下列偽代碼程序輸出的結(jié)果為
 

Read  x,y
While y≤3
y←2x+y 
Print  y
End  while.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,四邊形ABCD為矩形,AB⊥BP,M、N分別為AC、PD的中點.求證:
(1)MN∥平面ABP;
(2)平面ABP⊥平面APC的充要條件是BP⊥PC.

查看答案和解析>>

同步練習(xí)冊答案