【題目】動點(diǎn)在橢圓上,過點(diǎn)作軸的垂線,垂足為,點(diǎn)滿足,已知點(diǎn)的軌跡是過點(diǎn)的圓.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn)(,在軸的同側(cè)),,為橢圓的左、右焦點(diǎn),若,求四邊形面積的最大值.
【答案】(1);(2)3.
【解析】
(1)設(shè)點(diǎn),,得到,點(diǎn)的軌跡是過的圓,故,得到橢圓方程.
(2)如圖,延長交于點(diǎn),由對稱性可知:,設(shè),,直線的方程為,聯(lián)立方程得到,,計算,利用均值不等式得到答案.
(1)設(shè)點(diǎn),,則點(diǎn),,,
,,,
點(diǎn)在橢圓上,,即為點(diǎn)的軌跡方程.
又點(diǎn)的軌跡是過的圓,,解得,
所以橢圓的方程為.
(2)如圖,延長交于點(diǎn),由對稱性可知:,
由(1)可知,,
設(shè),,直線的方程為,
由可得,,
,,
,
設(shè)與的距離為,則四邊形面積
,
而,
,
當(dāng)且僅當(dāng),即時,取等號.
故四邊形面積的最大值為3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)直線與軸的交點(diǎn)為,經(jīng)過點(diǎn)的動直線與曲線交于,兩點(diǎn),證明:為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的短軸長為2,離心率為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓E相切于點(diǎn)P(點(diǎn)P在第一象限內(nèi)),與圓相交于點(diǎn)A,B,且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第30屆夏季奧運(yùn)會將于2012年7月27日在倫敦舉行,當(dāng)?shù)啬硨W(xué)校招募了8名男志愿者和12名女志愿者.將這20名志愿者的身高編成如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”,且只有“女高個子”才能擔(dān)任“禮儀小姐”.
(I)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?
(Ⅱ)若從所有“高個子”中選3名志愿者,用X表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出X的分布列,并求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)在橢圓上,過點(diǎn)作軸的垂線,垂足為,點(diǎn)滿足,已知點(diǎn)的軌跡是過點(diǎn)的圓.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn)(,在軸的同側(cè)),,為橢圓的左、右焦點(diǎn),若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過拋物線的焦點(diǎn)且與軸垂直的直線與拋物線在第一象限交于點(diǎn),的面積為,其中為坐標(biāo)原點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,,為拋物線上的兩個不同的點(diǎn),直線,的斜率分別為,,且,求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知底面是邊長為2的菱形,平面,,,分別是棱,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)討論在上的單調(diào)性;
(2)當(dāng)時,若存在正實(shí)數(shù),使得對,都有,求的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(m為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)直線l與曲線C相交于M,N兩點(diǎn),若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com