【題目】如圖,四棱柱中,側(cè)棱底面,,,,,為棱的中點(diǎn).
(1)證明;
(2)求二面角的余弦值;
(3)設(shè)點(diǎn)在線(xiàn)段上,且直線(xiàn)與平面所成角的正弦值為,求線(xiàn)段的長(zhǎng).
【答案】(1)見(jiàn)證明;(2);(3)
【解析】
(Ⅰ)以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,寫(xiě)出點(diǎn)的坐標(biāo),寫(xiě)出向量,,計(jì)算兩向量的數(shù)量積即可證明垂直(Ⅱ)利用向量的坐標(biāo),分別求出平面的法向量,平面的法向量,即可計(jì)算二面角的余弦值(III)設(shè),寫(xiě)出,求平面的一個(gè)法向量,利用線(xiàn)面角公式寫(xiě)出直線(xiàn)與平面所成角的正弦值且為,可解出,即可求解線(xiàn)段的長(zhǎng).
(I)以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,如圖,
依題意得,,,
,,.
則,,
而.
所以.
(II),,
設(shè)平面的法向量為,則,
即,取.
設(shè)平面的法向量為,則,
即,取.
,
所以二面角的余弦值為.
(III),,
設(shè),有.
取為平面的一個(gè)法向量,
設(shè)為直線(xiàn)與平面所成的角,
則
.
于是,解得.
所以.
所以線(xiàn)段的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在(-∞,+∞)上有意義,且對(duì)于任意的x,y∈R,有|f(x)-f(y)|<|x-y|并且函數(shù)f(x+1)的對(duì)稱(chēng)中心是(-1,0),若函數(shù)g(x)-f(x)=x,則不等式g(2x-x2)+g(x-2)<0的解集是( ).
A.B.
C.,D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓和雙曲線(xiàn)有共同的焦點(diǎn),,點(diǎn)是,的交點(diǎn),若是銳角三角形,則橢圓離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李在做一份調(diào)查問(wèn)卷,共有4道題,其中有兩種題型,一種是選擇題,共2道,另一種是填空題,共2道.
(1)小李從中任選2道題解答,每一次選1題(不放回),求所選的題不是同一種題型的概率;
(2)小李從中任選2道題解答,每一次選1題(有放回),求所選的題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿(mǎn)足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿(mǎn)足,數(shù)列{cn}的前n項(xiàng)和為T(mén)n,若不等式(-1)nλ<Tn+對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正△ABC的邊長(zhǎng)為2, CD是AB邊上的高,E、F分別是AC和BC的中點(diǎn)(如圖(1)).現(xiàn)將△ABC沿CD翻成直二面角A-DC-B(如圖(2)).在圖(2)中:
(1)求證:AB∥平面DEF;
(2)在線(xiàn)段BC上是否存在一點(diǎn)P,使AP⊥DE?證明你的結(jié)論;
(3)求二面角E-DF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若實(shí)數(shù),滿(mǎn)足,則的最小值是( )
A. 0 B. C. -6 D. -3
【答案】C
【解析】
畫(huà)出可行域,向上平移目標(biāo)函數(shù)到可行域邊界的位置,由此求得目標(biāo)函數(shù)的最小值.
畫(huà)出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值為.故選C.
【點(diǎn)睛】
本小題主要考查線(xiàn)性規(guī)劃的知識(shí),考查線(xiàn)性目標(biāo)函數(shù)的最值的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.畫(huà)可行域時(shí),要注意判斷不等式所表示的范圍是在直線(xiàn)的哪個(gè)方位,不一定是三條直線(xiàn)圍成的三角形.還要注意目標(biāo)函數(shù)化成斜截式后,截距和目標(biāo)函數(shù)的對(duì)應(yīng)關(guān)系,截距最大時(shí),目標(biāo)函數(shù)不一定取得最大值,可能取得最小值.
【題型】單選題
【結(jié)束】
12
【題目】已知,是橢圓長(zhǎng)軸上的兩個(gè)端點(diǎn),,是橢圓上關(guān)于軸對(duì)稱(chēng)的兩點(diǎn),直線(xiàn),的斜率分別為,若橢圓的離心率為,則的最小值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面平面;
(2)為線(xiàn)段上一點(diǎn),為線(xiàn)段上一點(diǎn),且,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com