如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;
(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關(guān)系式,并證明:當0 < BE < a時,恒有< 1.
(第20題–1) (第20題–2) |
(方法1)設(shè)菱形的中心為O,以O為原點,對角線AC,BD所在直線分別為x,y軸,建立空間直角坐標系如圖1.設(shè)BE = t (t > 0) .
(Ⅰ)
(第20題 – 1 ) |
設(shè)平面的法向量為,則
3分
設(shè)平面的法向量為,
則 4分
設(shè)二面角的大小為,則, 6分
∵cosq Î, ∴ ,
解得 £ t £ . 所以BE的取值范圍是 [,]. 8分
(Ⅱ) 設(shè),則
由平面平面,得平面,
,化簡得:(t ¹ a),即所求關(guān)系式:(BE ¹ a).
∴當0< t < a時,< 1. 即:當0 < BE < a時,恒有< 1. 14分
(方法2)
(Ⅰ)如圖2,連接D1A,D1C,EA,EC,D1O,EO,
∵ D1A= D1C,所以,D1O⊥AC,同理,EO⊥AC,
∴是二面角的平面角.設(shè)其為q. 3分
連接D1E,在△OD1E中,設(shè)BE = t (t > 0)則有:
OD1 = ,OE = ,D1E = ,
∴ . 6分
(第20題 – 2) |
∵cosq Î, ∴ ,
解得 £ t £ . 所以BE的取值范圍是 [,].
所以當條件滿足時,£ BE £ . 8分
(Ⅱ)當點E在平面A1D1C1上方時,連接A1C1,則A1C1∥AC,
連接EA1,EC1,設(shè)A1C1的中點為O1,則O1在平面BDD1內(nèi),過O1作O1P∥OE交D1E于點P,則平面平面.
作平面BDD1如圖3.過D1作D1B1∥BD交于l點B1,設(shè)EO交D1B1于點Q.
因為O1P∥OE,所以==,
(第20題 – 3) |
由Rt△EB1Q∽RtEBO,得,解得QB1 = ,得=, 12分
當點E在平面A1D1C1下方時,同理可得,上述結(jié)果仍然成立. 13分
∴有=(BE ¹a),∴當0 < t < a時,< 1. 14分
科目:高中數(shù)學 來源: 題型:
π |
4 |
π |
3 |
D1P |
PE |
D1P |
PE |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
4 |
π |
3 |
D1E |
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三第二次教學質(zhì)量考試數(shù)學理卷 題型:解答題
(本題滿分14分)
如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;
(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關(guān)系式,并證明:當0 < BE < a時,恒有< 1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
己知在銳角ΔABC中,角所對的邊分別為,且
(I )求角大;
(II)當時,求的取值范圍.
20.如圖1,在平面內(nèi),是的矩形,是正三角形,將沿折起,使如圖2,為的中點,設(shè)直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側(cè)。
(1)求證:平面;
(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。
21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù) ,
(Ⅰ)若在上存在最大值與最小值,且其最大值與最小值的和為,試求和的值。
(Ⅱ)若為奇函數(shù):
(1)是否存在實數(shù),使得在為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;
(2)如果當時,都有恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年浙江省杭州市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com