(12分)設(shè){an}是由正數(shù)組成的等差數(shù)列,Sn是其前n項(xiàng)和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整數(shù)p,q,m,使得p+q=2m,證明:不等式SpSq<S成立;
(3)是否存在常數(shù)k和等差數(shù)列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,試求出常數(shù)k和數(shù)列{an}的通項(xiàng)公式;若不存在,請(qǐng)說明理由。
(1)S3n=3 S2n-3 Sn=60…
(2)略
(3)存在常數(shù)k=及等差數(shù)列an=n-使其滿足題意
【解析】(1)在等差數(shù)列{an}中,Sn,S2n-Sn,S3n-S2n,…成等差數(shù)列,
∴Sn+(S3n-S2n)=2(S2n-Sn)
∴S3n=3 S2n-3 Sn=60…………………………………………………………………4分
(2)SpSq=pq(a1+ap)(a1+aq)
=pq[a+a1(ap+aq)+apaq]
=pq(a+2a1am+apaq)<()2[a+2a1am+()2]
=m2(a+2a1am+a)=[m(a1+am)]2
=S………………………………………………………………………8分
(3)設(shè)an=pn+q(p,q為常數(shù)),則ka-1=kp2n2+2kpqn+kq2-1
Sn+1=p(n+1)2+(n+1)
S2n=2pn2+(p+2q)n
∴S2n-Sn+1=pn2+n-(p+q),
依題意有kp2n2+2kpqn+kq2-1= pn2+n-(p+q)對(duì)一切正整數(shù)n成立,
∴
由①得,p=0或kp=;
若p=0代入②有q=0,而p=q=0不滿足③,
∴p≠0
由kp=代入②,
∴3q=,q=-代入③得,
-1=-(p-),將kp=代入得,∴P=,
解得q=-,k=
故存在常數(shù)k=及等差數(shù)列an=n-使其滿足題意…………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011屆湖北省夷陵中學(xué)、鐘祥一中高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(12分)設(shè){an}是由正數(shù)組成的等差數(shù)列,Sn是其前n項(xiàng)和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整數(shù)p,q,m,使得p+q=2m,證明:不等式SpSq<S成立;
(3)是否存在常數(shù)k和等差數(shù)列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,試求出常數(shù)k和數(shù)列{an}的通項(xiàng)公式;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一6月月考數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè){an}是由正數(shù)組成的等比數(shù)列,且a5a6=81,log3a1+ log3a2+…+ log3a10的值是( )
A.5 B.10; C.20 D.2或4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三11月月考理科數(shù)學(xué)試卷 題型:解答題
(本題滿分14分) 設(shè){an}是由正數(shù)組成的等差數(shù)列,Sn是其前n項(xiàng)和
(1)若,求的值;
(2)若互不相等正整數(shù)p,q,m,使得p+q=2m,證明:不等式成立;
(3)是否存在常數(shù)k和等差數(shù)列{an},使恒成立(n∈N*),若存在,試求出常數(shù)k和數(shù)列{an}的通項(xiàng)公式;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(12分)設(shè){an}是由正數(shù)組成的等差數(shù)列,Sn是其前n項(xiàng)和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整數(shù)p,q,m,使得p+q=2m,證明:不等式SpSq<S成立;
(3)是否存在常數(shù)k和等差數(shù)列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,試求出常數(shù)k和數(shù)列{an}的通項(xiàng)公式;若不存在,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com