【題目】已知橢圓的一個焦點為,離心率為.為橢圓的左頂點,為橢圓上異于的兩個動點,直線與直線分別交于兩點.
(I)求橢圓的方程;
(II)若與的面積之比為,求的坐標;
(III)設直線與軸交于點,若三點共線,求證:.
【答案】(I)(II)的坐標為或.(III)見解析
【解析】
(Ⅰ)由題意得c=1,結(jié)合離心率求得a,再由隱含條件求得b,則橢圓方程可求;(Ⅱ)由△PAF與△PMF的面積之比為,可得.設M(4,m)(m≠0),P(x0,y0),則,求得.將其代入,解得m=±9.則M的坐標可求;(Ⅲ)設M(4,m),N(4,n),P(x0,y0),分析可得m≠0,n≠0.直線AM的方程為.聯(lián)立直線方程與橢圓方程,利用根與系數(shù)的關系求得P的坐標,利用利用對稱性證明若P,F,Q三點共線,則∠MFR=∠FNR.
(I)由題意得解得
因為,所以.
所以橢圓的方程為.
(II)因為與的面積之比為,
所以.
所以.
設,則,
解得.
將其代入,解得.
所以的坐標為或.
(III)設,
若,則為橢圓的右頂點,由三點共線知,為橢圓的左頂點,
不符合題意.
所以.同理.
直線的方程為.
由消去,整理得.
成立.
由,解得.
所以.
所以.
當時,,,即直線軸.
由橢圓的對稱性可得.
又因為,
所以.
當時,,
直線的斜率.
同理.
因為三點共線,
所以.
所以.
在和中,
,,
所以.
因為均為銳角,
所以.
綜上,若三點共線,則.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,于點,將沿折起,使,連接,得到如圖所示的幾何體.
(1)求證:平面平面;
(2)若點在線段上,直線與平面所成角的正切值為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,A,B,C所對的邊分別為a,b,c且ccosA=4,asinC=5.
(1)求邊長c;
(2)著△ABC的面積S=20.求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a是實數(shù),函數(shù).
(1)若,求a的值及曲線在點處的切線方程;
(2)討論函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若冬季晝夜溫差x(單位:)與某新品種反季節(jié)大豆的發(fā)芽數(shù)量y(單位:顆)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是( )
A.y與x具有正相關關系
B.回歸直線過點
C.若冬季晝夜溫差增加,則該新品種反季節(jié)大豆的發(fā)芽數(shù)約增加2.5顆
D.若冬季晝夜溫差的大小為,則該新品種反季節(jié)大豆的發(fā)芽數(shù)一定是22顆
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點F為拋物線C:()的焦點,過點F的動直線l與拋物線C交于M,N兩點,且當直線l的傾斜角為45°時,.
(1)求拋物線C的方程.
(2)試確定在x軸上是否存在點P,使得直線PM,PN關于x軸對稱?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式對任意 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點間的距離往往不是指兩點間的直線距離(位移),而是實際路程(如圖).在直角坐標平面內(nèi),我們定義,兩點間的“直角距離”為:.
(1)在平面直角坐標系中,寫出所有滿足到原點的“直角距離”為2的“格點”的坐標.(格點指橫、縱坐標均為整數(shù)的點)
(2)求到兩定點、的“直角距離”和為定值的動點軌跡方程,并在直角坐標系內(nèi)作出該動點的軌跡.(在以下三個條件中任選一個做答)
①,,;
②,,;
③,,.
(3)寫出同時滿足以下兩個條件的“格點”的坐標,并說明理由(格點指橫、縱坐標均為整數(shù)的點).
①到,兩點“直角距離”相等;
②到,兩點“直角距離”和最小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com