分析 兩個單位立方體構(gòu)成直二面角,建立空間坐標(biāo)系,利用向量法能求出結(jié)果.
解答 解:如圖為兩個單位立方體構(gòu)成,圖中的左側(cè)面和底面構(gòu)成題目中的直二面角,
O1、O2為單位球的球心,小球O在MN上.
設(shè)OH=r,則有:OO1=OO2=r+1,才能滿足外切條件.
如圖,為M為原點建立空間坐標(biāo)系,各點坐標(biāo)為:
O (r,0,r),O2(1,1,1)
∴OO22=(1+r)2,(1-r)2+1+(1-r)2=(1+r)2,
解得:r=3±$\sqrt{7}$,
其中r=3-$\sqrt{7}$為符合題意的解.
∴r=3-$\sqrt{7}$.
故答案為:3-$\sqrt{7}$.
點評 本題考查小球半徑的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 37 | B. | 38 | C. | 39 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com