4.在區(qū)間[-1,1]內(nèi)隨機(jī)取兩個(gè)實(shí)數(shù)x,y,則滿足y≥x2的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{3}{5}$

分析 該題涉及兩個(gè)變量,故是與面積有關(guān)的幾何概型,分別表示出滿足條件的面積和整個(gè)區(qū)域的面積,最后利用概率公式解之即可.

解答 解:由題意可得,在區(qū)間[-1,1]內(nèi)隨機(jī)取兩個(gè)實(shí)數(shù)x,y,
區(qū)域?yàn)檫呴L為2的正方形,面積為4,
滿足y≥x2的區(qū)域?yàn)閳D中陰影部分,
面積為2${∫}_{0}^{1}(1-{x}^{2})dx$=2×$(x-\frac{1}{3}{x}^{3}){|}_{0}^{1}$=$\frac{4}{3}$,
∴滿足y≥x2的概率是$\frac{\frac{4}{3}}{4}$=$\frac{1}{3}$.
故選:A.

點(diǎn)評 本題主要考查了與面積有關(guān)的幾何概率的求解,解題的關(guān)鍵是準(zhǔn)確求出區(qū)域的面積,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)y=f(x)是一次函數(shù),且有3f(-1)-f(2)=-19,2f(0)+f(1)=14,求這個(gè)函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,滿足:an2=2Sn-an(n∈N+
(1)證明:數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3n+(-1)n-1λ•2an,是否存在整數(shù)λ(λ≠0),使bn+1>bn對一切n∈N+恒成立?若存在,求出λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知命題p:?x∈R,x-2>0,命題q:?x∈R,$\sqrt{x}$>x,則下列說法中正確的是④.
①命題p∨q是假命題          
②命題p∧q是真命題
③命題p∨(¬q)是假命題      
④命題p∧(¬q)是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中點(diǎn).
(1)證明:CD⊥面PAD;
(2)求直線AC與PB所成的角;
(3)求點(diǎn)P到平面MAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在邊長為1的菱形ABCD中,∠ABC=60°,將菱形沿對角線AC折起,使折起后BD=1,則二面角B-AC-D的平面角的余弦值$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.判斷下列對應(yīng)哪些是由A到B的映射?為什么?
(1)A=R,B={y|y>0},f:x→y=1+$\frac{1}{|x|}$
(2)A=R,B={y|y≥0},f:x→y=x2
(3)A={x|x≥3},B={y|y≥0},f:x→y=$\sqrt{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=(${\frac{1}{2}}$)${\;}^{{x^2}-2x+2}}$的值域是( 。
A.(0,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$]C.(-∞,2]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)復(fù)數(shù)z滿足(1-i)z=2i,其中i為虛數(shù)單位,則在復(fù)平面中$\overline{z}$在第( 。┫笙蓿
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案