11.在實數(shù)集R中,已知集合A={x|$\sqrt{{x^2}-4}$≥0}和集合B={x||x-1|+|x+1|≥2},則A∩B=( 。
A.{-2}∪[2,+∞)B.(-∞,-2]∪[2,+∞)C.[2,+∞)D.{0}∪[2,+∞)

分析 求出A與B中不等式的解集分別確定出A與B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:x2-4≥0,
解得:x≥2或x≤-2,即A=(-∞,-2]∪[2,+∞),
由B中|x-1|+|x+1|≥2,得到x≤-1或x≥1,即B=(-∞,-1]∪[1,+∞),
則A∩B=(-∞,-2]∪[2,+∞),
故選B

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知公比為q的等比數(shù)列{an}的前6項和S6=63,且$4{a_1},\frac{3}{2}{a_2},{a_2}$成等差數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)設(shè){bn}是首項為2,公差為-a1的等差數(shù)列,其前n項和為Tn,是否存在n∈N*,使得不等式Tn>bn成立?若存在,求出n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x,-1<x<2}\\{\frac{{x}^{2}}{2},x≥2}\end{array}\right.$,則f(f($\frac{3}{2}$))=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.有10道數(shù)學單項選擇題,每題選對得4分,不選或選錯得0分.已知某考生能正確答對其中的7道題,余下的3道題每題能正確答對的概率為$\frac{1}{3}$.假設(shè)每題答對與否相互獨立,記ξ為該考生答對的題數(shù),η為該考生的得分,則P(ξ=9)=$\frac{2}{9}$,Eη=32(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知$\overrightarrow{OA}$=(1,1),$\overrightarrow{OB}$=(4,1),$\overrightarrow{OC}$=(4,5),則$\overrightarrow{AB}$與$\overrightarrow{AC}$夾角的余弦值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.袋中裝有大小相同的四個球,四個球上分別標有數(shù)字“2”,“3”,“4”,“6”.現(xiàn)從中隨機選取三個球,則所選的三個球上的數(shù)字能構(gòu)成等差數(shù)列的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知正項數(shù)列{an},其前n項和為Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求數(shù)列{an}的通項公式;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知(x0,y0,z0)是關(guān)于x、y、z的方程組$\left\{\begin{array}{l}{ax+by+cz=0}\\{cx+ay+bz=0}\\{bx+cy+az=0}\end{array}$的解.
(1)求證:$|\begin{array}{l}{a}&&{c}\\{c}&{a}&\\&{c}&{a}\end{array}|$=(a+b+c)•$|\begin{array}{l}{a}&&{1}\\{c}&{a}&{1}\\&{c}&{1}\end{array}|$;
(2)設(shè)z0=1,a、b、c分別為△ABC三邊長,試判斷△ABC的形狀,并說明理由;
(3)設(shè)a、b、c為不全相等的實數(shù),試判斷“a+b+c=0”是“x02+y02+z02>0”的④條件,并證明:①充分非必要;②必要非充分;③充分且必要;④非充分非充要.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若α,β是兩個不同平面,m,n是兩條不同直線,則下列結(jié)論錯誤的是(  )
A.如果m∥n,α∥β,那么m與α所成的角和n與β所成的角相等
B.如果m⊥n,m⊥α,n∥β,那么α⊥β
C.如果α∥β,m?α,那么m∥β
D.如果m⊥α,n∥α,那么m⊥n

查看答案和解析>>

同步練習冊答案