8.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,則實數(shù)a的值為(  )
A.2B.2 或-1C.-2或1D.-2

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{m}$∥$\overrightarrow{n}$,∴a(1-a)+2=0,化為(a-2)(a+1)=0,
解得a=2或-1.
故選:B.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{a{x}^{2}+bx}{{e}^{x}}$,(e為自然對數(shù)的底數(shù),a,b∈R),若f(x)在x=0處取得極值,且x-ey=0是曲線y=f(x)的切線.
(1)求a,b的值;
(2)若?x0∈[1,e]使得不等式f(x0)-k<0能成立,求實數(shù)k的取值范圍;
(3)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函數(shù)h(x)=g(x)-cx2為增函數(shù),求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC的外接圓的圓心為O,半徑為1,$2\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,且|$\overrightarrow{AO}$|=|$\overrightarrow{AB}$|,則$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為(  )
A.$\frac{1}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)y=f(x)和y=g(x)在[-2,2]的圖象如圖所示:則方程f[g(x)]=0有且僅有6個根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:x<1;命題q:不等式x2+x-2<0成立,則命題p的(  )是命題q.
A.充分而不必要條件B.充要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-2,-1).
(1)求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角θ;
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$上的一點M到左焦點的距離為3,那么點M到右準線的距離為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知甲、乙、丙3名運動員擊中目標的概率分別為0.7,0.8,0.85,若他們3人向目標各發(fā)1槍,則目標沒有被擊中的概率為0.009.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)若函數(shù)f(x)=x3+bx2+cx+d的單調(diào)遞減區(qū)間(-1,2)求b,c的值;
(2)設(shè)$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}{x^2}+2ax$,若f(x)在$(\frac{2}{3},+∞)$上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(3)已知函數(shù)f(x)=alnx-ax-3(a∈R),若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+$\frac{m}{2}$]在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案