【題目】已知橢圓C: (a>b>0)短軸的兩個頂點與右焦點的連線構(gòu)成等邊三角形,橢圓C上任意一點到橢圓左右兩個焦點的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C與X軸負(fù)半軸交于點A,直線過定點(﹣1,0)交橢圓于M,N兩點,求△AMN面積的最大值.

【答案】
(1)解:由題意a=2b,

又2a=4,所以a=2,b=1

橢圓方程為


(2)解:A點坐標(biāo)為(﹣2,0),直線MN過定點(﹣1,0),

∴令直線MN的方程為x=my﹣1,

聯(lián)立 ,消去x得(m2+4)y2﹣2my﹣3=0,

,

= = ,

令t=m2+3,t≥3,

,

當(dāng)且僅當(dāng)t=m2+3=3即m=0時,△AMN面積的最大值為


【解析】(1)由題意a=2b,根據(jù)橢圓C上任意一點到橢圓左右兩個焦點的距離之和為4,利用橢圓的定義求出a,可得b,即可求橢圓C的方程;(2)設(shè)直線MN:x=my﹣1,聯(lián)立橢圓方程,消去x,運(yùn)用韋達(dá)定理,再由△AMN面積為S= |AD||y1﹣y2|,代入化簡整理,再由對勾函數(shù)的性質(zhì),即可得到最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個說法: ①若向量{ 、 、 }是空間的一個基底,則{ + 、 、 }也是空間的一個基底.
②空間的任意兩個向量都是共面向量.
③若兩條不同直線l,m的方向向量分別是 ,則l∥m
④若兩個不同平面α,β的法向量分別是 ,且 =(1,2,﹣2)、 =(﹣2,﹣4,4),則α∥β.
其中正確的說法的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=f(x)的圖象向右平移 單位得到函數(shù)y=cos2x的圖象,則f(x)=(
A.﹣sin2x
B.cos2x
C.sin2x
D.﹣cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x≠1)
(1)證明f(x)在(1,+∞)上是減函數(shù);
(2)令g(x)=lnf(x),判斷g(x)=lnf(x)的奇偶性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,點M在PD上.

(1)求證:AB⊥PC
(2)若二面角M﹣AC﹣D的大小為45°,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調(diào)遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差s 和s ,并由此分析兩組技工的加工水平;
(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對其加工的零件進(jìn)行檢測,若兩人加工的合格零件個數(shù)之和大于17,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是(﹣∞,+∞)上的增函數(shù),那么a的取值范圍是(
A.[ ,3)
B.(0,3)
C.(1,3)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù)f(x)滿足:
①對任意x,y∈R,都有:f(x+y)=f(x)+f(y)﹣1;
②當(dāng)x<0時,f(x)>1.
(Ⅰ)試判斷函數(shù)f(x)﹣1的奇偶性;
(Ⅱ)試判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)若不等式f(a2﹣2a﹣7)+ >0的解集為{a|﹣2<a<4},求f(5)的值.

查看答案和解析>>

同步練習(xí)冊答案