【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對(duì)任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )
A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)
【答案】A
【解析】當(dāng)時(shí),由此可知在上單調(diào)遞減,在上單調(diào)遞增, , 且,數(shù)是定義在上的奇函數(shù), ,而時(shí), ,所以的圖象如圖,令,則,由圖可知,當(dāng)時(shí)方程至多3個(gè)根,當(dāng)時(shí)方程沒有根,而對(duì)任意, 至多有一個(gè)根,從而函數(shù)的零點(diǎn)個(gè)數(shù)至多有3個(gè).
點(diǎn)晴:本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個(gè)數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理. 恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,M和N分別為BC、C1C的中點(diǎn),那么異面直線MN與AC所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)對(duì)任意x∈R,都有f(﹣x)+f(x)=0,f(x)+f(x+ )=0,則f( )=( )
A.0
B.1
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(sinx,cosx), =(cosx,sinx),x∈R,函數(shù)f(x)= ( ﹣ ).
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[- , ]時(shí),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,其成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示:
(1)依據(jù)頻率分布直方圖,估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(2)已知在[90,100]段的學(xué)生的成績(jī)都不相同,且都在94分以上,現(xiàn)用簡(jiǎn)單隨機(jī)抽樣方法,從95,96,97,98,99,100這6個(gè)數(shù)中任取2個(gè)數(shù),求這2個(gè)數(shù)恰好是兩個(gè)學(xué)生的成績(jī)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下四種變換方式:
① 向左平移個(gè)單位長(zhǎng)度,再將每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的;
② 向右平移個(gè)單位長(zhǎng)度,再將每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的;
③ 每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的,向右平移個(gè)單位長(zhǎng)度;
④ 每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的,向左平移個(gè)單位長(zhǎng)度;
其中能將的圖像變換成函數(shù)的圖像的是( )
A.①和③ B.①和④ C.②和④ D.②和③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)在(0,+∞)上為減函數(shù)的是( )
A.y=﹣|x﹣1|
B.y=ex
C.y=ln(x+1)
D.y=﹣x(x+2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)求PB和平面PAD所成的角的大;
(2)證明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com