【題目】為了了解市民對(duì)開設(shè)傳統(tǒng)文化課的態(tài)度,教育機(jī)構(gòu)隨機(jī)抽取了位市民進(jìn)行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民人中持支持態(tài)度的為人.
(1)完成列聯(lián)表,并判斷是否有的把握認(rèn)為性別與支持與否有關(guān)?
支持 | 不支持 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
(2)為了進(jìn)一步征求對(duì)開展傳統(tǒng)文化的意見和建議,從抽取的位市民中對(duì)不支持的按照分層抽樣的方法抽取位市民,并從抽取的人中再隨機(jī)選取人進(jìn)行座談,求選取的人恰好為男女的概率.
附:
【答案】(1)填表見解析;有的把握認(rèn)為性別與支持與否有關(guān)(2)
【解析】
(1)根據(jù)分層抽樣原理計(jì)算并填寫列聯(lián)表,求出觀測(cè)值,對(duì)照臨界值得出結(jié)論;
(2)用列舉法求出基本事件數(shù),計(jì)算所求的概率值.
解:(1)抽取的男性市民為人,持支持態(tài)度的為人,
男性公民中持支持態(tài)度的為人,列出列聯(lián)表如下:
支持 | 不支持 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
所以:,
所以在犯錯(cuò)誤的概率不超過的前提下,可以認(rèn)為性別與支持與否有關(guān).
(2)抽取的人中抽到的男性的人數(shù)為
女性的人數(shù)為.
記被抽取名男性市民為名女性市民為,
從人中抽取的人的所有抽法有,共有種,
恰有名女性的抽法有,共有種,
由于每人被抽到是等可能的,
所以由古典概型得
故選取的人恰好男女的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,為棱的中點(diǎn),.
(1)證明:平面;
(2)設(shè)二面角的正切值為,,,求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心在l上.若圓C上存在點(diǎn)M,使MA=2MO,則圓心C的橫坐標(biāo)a的取值范圍是( )
A.B.[0,1]
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型超市抽查了100天該超市的日純利潤(rùn)數(shù)據(jù),并將日純利潤(rùn)數(shù)據(jù)分成以下幾組(單位:萬元):,,,,,,統(tǒng)計(jì)結(jié)果如下表所示:
組別 | ||||||
頻數(shù) | 5 | 20 | 30 | 30 | 10 | 5 |
以上述樣本分布的頻率估計(jì)總體分布的概率,解決下列問題:
(1)從該大型超市近幾年的銷售記錄中抽出5天,求其中日純利潤(rùn)在區(qū)間內(nèi)的天數(shù)不少于2的概率;
(2)該超市經(jīng)理由頻數(shù)分布表可以認(rèn)為,該大型超市每天的純利潤(rùn)服從正態(tài)分布,其中,近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值).
①試?yán)迷撜龖B(tài)分布,估計(jì)該大型超市1000天內(nèi)日純利潤(rùn)在區(qū)間內(nèi)的天數(shù)(精確到個(gè)位);
②該大型超市負(fù)責(zé)人根據(jù)每日的純利潤(rùn)給超市員工制定了兩種不同的獎(jiǎng)勵(lì)方案:
方案一:直接發(fā)放獎(jiǎng)金,日純利潤(rùn)低于時(shí)每名員工發(fā)放獎(jiǎng)金70元,日純利潤(rùn)不低于時(shí)每名員工發(fā)放獎(jiǎng)金90元;
方案二:利用抽獎(jiǎng)的方式獲得獎(jiǎng)金,其中日純利潤(rùn)不低于時(shí)每位員工均有兩次抽獎(jiǎng)機(jī)會(huì),日純利潤(rùn)低于時(shí)每位員工只有一次抽獎(jiǎng)機(jī)會(huì);每次抽獎(jiǎng)的獎(jiǎng)金及對(duì)應(yīng)的概率分別為
金額 | 50元 | 100元 |
概率 |
小張恰好為該大型超市的一名員工,則從數(shù)學(xué)期望的角度看,小張選擇哪種獎(jiǎng)勵(lì)方案更有利?
參考數(shù)據(jù):若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)為了打贏脫貧攻堅(jiān)戰(zhàn),決定盤活貧困村的各項(xiàng)經(jīng)濟(jì)發(fā)展要素,實(shí)施了產(chǎn)業(yè)、創(chuàng)業(yè)、就業(yè)“三業(yè)并舉”工程.在實(shí)施過程中,引導(dǎo)某貧困村農(nóng)戶因地制宜開展種植某經(jīng)濟(jì)作物.該類經(jīng)濟(jì)作物的質(zhì)量以其質(zhì)量指標(biāo)值來衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為,其質(zhì)量指標(biāo)的等級(jí)劃分如下表1:
表1
質(zhì)量指標(biāo)值 | 產(chǎn)品等級(jí) |
優(yōu)秀品 | |
良好品 | |
合格品 | |
不合格品 |
為了解該類經(jīng)濟(jì)作物在當(dāng)?shù)氐姆N植效益,當(dāng)?shù)匾N了甲、乙兩個(gè)品種.并隨機(jī)抽取了甲、乙兩個(gè)品種的各件產(chǎn)品,測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面產(chǎn)品質(zhì)量指標(biāo)值頻率分布直方圖(圖1和圖2).
(1)若將頻率視為概率,從乙品種產(chǎn)品中有放回地隨機(jī)抽取件,記“抽出乙品種產(chǎn)品中至少件良好品或以上”為事件,求事件發(fā)生的概率;(結(jié)果保留小數(shù)點(diǎn)后位)(參考數(shù)值:,)
(2)若甲、乙兩個(gè)品種的銷售利潤(rùn)率與質(zhì)量指標(biāo)值滿足表2
表2
質(zhì)量指標(biāo)值 | ||||
銷售利潤(rùn)率 |
其中,試分析,從長(zhǎng)期來看,種植甲、乙哪個(gè)品種的平均利潤(rùn)率較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系
在平面直角坐標(biāo)系中,已知曲線: ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知直線 : .
(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(Ⅱ)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.
[選修 4-5]不等式選講
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a為常數(shù))有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個(gè)產(chǎn)品),已知其中有且只有一袋次品(10個(gè)產(chǎn)品均為次品)如果將5袋產(chǎn)品以1~5編號(hào),第袋取出個(gè)產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號(hào)是2,此時(shí)的重量_________;若次品所在的袋子的編號(hào)是,此時(shí)的重量_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm2
(1)若廣告商要求包裝盒側(cè)面積S(cm)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com