在復(fù)數(shù)范圍內(nèi),i為虛數(shù)單位,若實數(shù)x,y滿足(1+i)x+(1-i)y=2 則x-y的值是( 。
A、1B、0C、-2D、-3
考點(diǎn):復(fù)數(shù)相等的充要條件
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)相等列出方程組,求出x-y的值即可.
解答: 解:實數(shù)x,y滿足(1+i)x+(1-i)y=2,
x+y=2
x-y=0
,可得x-y=0.
故選:B.
點(diǎn)評:本題考查復(fù)數(shù)相等的充要條件的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)調(diào)查統(tǒng)計,某種型號的汽車在勻速行駛中,每小時的耗油量y(升)關(guān)于行駛速度x(千米/時)的函數(shù)可表示為y=
1
120000
x3-
1
50
x+
18
5
(0<x≤100).已知甲、乙兩地相距100千米,在勻速行駛速度不超過100千米/時的條件下,該種型號的汽車從甲地到乙地的耗油量記為f(x)(升).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性,當(dāng)x為多少時,耗油量f(x)為最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某高中十佳歌手比賽上某一位選手得分的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<x<3},B={x|x≤2},則A∩(∁RB)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xoy上的區(qū)域由不等式組
x+y-5≤0
y≥x
x≥1
確定,若M(x,y)為區(qū)域D上的動點(diǎn),點(diǎn)A的坐標(biāo)為(2,3),則z=
OA
OM
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“函數(shù)f(x)=logax在(0,+∞)上是增函數(shù)”是“函數(shù)g(x)=x2+2ax+1在(1,+∞)上是增函數(shù)”的( 。
A、充分但不必要條件
B、必要但不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程:2x-1+2x2+a=0有兩個實數(shù)根,則實數(shù)a的取值范圍可以是( 。
A、(
1
2
,+∞)
B、(1,+∞)
C、(-∞,1)
D、(-∞,-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題:①y=x+
1
x
≥2,②若a>0,b>0且a+b=2,則ab≤1,③
x
+
4
x
的最小值為4,④a∈R,a2+1>2a.其中正確的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三個內(nèi)角A,B,C所對應(yīng)邊分別為a,b,c,且asinAsinB+bcos2A=
2
a.
(Ⅰ)求
b
a
的值;
(Ⅱ)若A,B,C成等差數(shù)列,求cosC的大。

查看答案和解析>>

同步練習(xí)冊答案