已知是一個(gè)等差 數(shù)列,且。
(1)求的通項(xiàng); (2)求的前項(xiàng)和的最大值。

(1);(2)時(shí),取最大值4.

解析試題分析:(1)設(shè)等差數(shù)列的公差為,則

解得:

(2)
時(shí),取最大值4.
考點(diǎn):等差數(shù)列的通項(xiàng)公式、求和公式。
點(diǎn)評(píng):中檔題,本題較為典型,突出對(duì)等差數(shù)列基礎(chǔ)知識(shí)的考查。涉及等差數(shù)列、等比數(shù)列的通項(xiàng)公式的確定,往往建立相關(guān)變量 的方程組,使問(wèn)題得解。確定等差數(shù)列和的最值,一般有兩種方法,一是利用二次函數(shù)知識(shí),二是利用確定正負(fù)項(xiàng)的方法。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為實(shí)數(shù),首項(xiàng)為,公差為的等差數(shù)列的前項(xiàng)和為,滿足.
(1)求通項(xiàng);
(2)設(shè)是首項(xiàng)為,公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),,Q=;若將,lgQ,lgP適當(dāng)排序后可構(gòu)成公差為1的等差數(shù)列的前三項(xiàng).
(1)試比較M、P、Q的大;
(2)求的值及的通項(xiàng);
(3)記函數(shù)的圖象在軸上截得的線段長(zhǎng)為,
設(shè),求,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且a3=5,a5=9;數(shù)列的前n項(xiàng)和為Sn,且Sn+bn=2.    
(1)求數(shù)列的通項(xiàng)公式;
(2)若為數(shù)列的前n項(xiàng)和,求.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足:
(1) 求數(shù)列的前20項(xiàng)的和; 
(2) 若數(shù)列滿足:,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,且方程有兩個(gè)不同的正根,其中一根是另一根的倍,記等差數(shù)列的前項(xiàng)和分別為,)。
(1)若,求的最大值;
(2)若,數(shù)列的公差為3,試問(wèn)在數(shù)列中是否存在相等的項(xiàng),若存在,求出由這些相等項(xiàng)從小到大排列得到的數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
(3)若,數(shù)列的公差為3,且,.
試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an}的首項(xiàng)為3,{bn}為等差數(shù)列且bnan+1an(n∈N*).若b3=-2,b10=12,求a8的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知的等比中項(xiàng)為,的等差中項(xiàng)為1,求等差數(shù)列{an}的通項(xiàng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案