若F1,F(xiàn)2是雙曲線與橢圓的共同的左、右焦點,點P是兩曲線的一個交點,且為等腰三角形,則該雙曲線的漸近線方程是          。

試題分析:先利用雙曲線=1(a>0,b>0)與橢圓=1的共同焦點,求得a2+b2=4,再利用點P是兩曲線的一個交點,且△PF1F2為等腰三角形,求得交點坐標,從而可求雙曲線的標準方程,進而可求雙曲線的漸近線方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,且經過點. 過它的兩個焦點分別作直線,交橢圓于A、B兩點,交橢圓于C、D兩點,且

(1)求橢圓的標準方程;
(2)求四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為,且過點(2,).
(1)求橢圓C的標準方程;
(2)M,N,P,Q是橢圓C上的四個不同的點,兩條都不和x軸垂直的直線MN和PQ分別過點F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓和雙曲線有相同的焦點是它們的一個交點,則的形狀是(   )
A.銳角三角形B.直角三角形
C.鈍角三角形D.隨的變化而變化

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線C與橢圓=1有共同的焦點F1,F2,且離心率互為倒數(shù).若雙曲線右支上一點P到右焦點F2的距離為4,則PF2的中點M到坐標原點O的距離等于________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的中心在原點,焦距為4,一條準線為x=-4,則該橢圓的方程為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線與橢圓相交于兩點,且線段的中點在直線上,則此橢圓的離心率為_______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

F1,F2分別是橢圓Ex2=1(0<b<1)的左、右焦點,過F1的直線lE相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線為焦點在軸上的橢圓,則實數(shù),滿足(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案