【題目】設(shè)函數(shù),其中.
(1)當時,判斷函數(shù)在定義域上的單調(diào)性;
(2)求函數(shù)的極值點;
(3)當時,試證明對任意的正整數(shù),不等式都成立.
【答案】(1)函數(shù)在定義域上單調(diào)遞增(2)答案不唯一,具體見解析(3)詳見解析
【解析】
(1)分析函數(shù)定義域,求導(dǎo)數(shù),當時,恒成立,即可寫出函數(shù)單調(diào)區(qū)間(2)由(1)中,分,,,四種情況分類討論函數(shù)的單調(diào)性,寫出函數(shù)極值點(3)觀察不等式構(gòu)造函數(shù),利用導(dǎo)數(shù)可證在上單調(diào)遞增,可知恒成立,令即可證明.
(1)函數(shù)的定義域為①,
,
令,則,由,得,
即在上恒成立,所以.
即當時,函數(shù)在定義域上單調(diào)遞增.
(2)①由(1)知,當時,函數(shù)無極值點.
②當時,,
因為當時,,時,,
所以當時,函數(shù)在上無極值點.
③當時,解,得,.
當時,,,所以,,
且時,,時,
,此時在上有唯一的極小值點.
當時,,,
在,上都大于0,在上小于0,
此時有一個極大值點和一個極小值點.
綜上可知,當時,在上有唯一的極小值點;
當時,有一個極大值點和一個極小值點;
當時,函數(shù)在上無極值點.
(3)證明:當時,,
令,
則,
顯然在上恒為正,
所以在上單調(diào)遞增,即當時,恒有,
所以當時,有,
即,所以對任意正整數(shù),取,可得恒成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)研機構(gòu),對本地歲的人群隨機抽取人進行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對應(yīng)的頻率分布直方圖如圖.
(1)根據(jù)頻率分布直方圖,估計這名“低碳族”年齡的平均值,中位數(shù);
(2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個年齡段應(yīng)各抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)斜率為的直線交橢圓于,兩點,且.若直線上存在點P,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,,,若為的中點.
(1)證明:平面;
(2)求異面直線和所成角;
(3)設(shè)線段上有一點,當與平面所成角的正弦值為時,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是偶函數(shù),求實數(shù)的值;
(2)若函數(shù),關(guān)于的方程有且只有一個實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校實行選科走班制度,張毅同學(xué)的選擇是物理、生物、政治這三科,且物理在層班級,生物在層班級.該校周一上午選科走班的課程安排如下表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法有( )
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理層2班 | 化學(xué)層3班 | 地理層1班 | 化學(xué)層4班 |
生物層1班 | 化學(xué)層2班 | 生物層2班 | 歷史層1班 |
物理層1班 | 生物層3班 | 物理層2班 | 生物層4班 |
物理層2班 | 生物層3班 | 物理層1班 | 物理層4班 |
政治1班 | 物理層3班 | 政治2班 | 政治3班 |
A.8種B.10種C.12種D.14種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸為極軸的極坐標系中,圓的方程.
(1)寫出直線的普通方程和圓的直角坐標方程;
(2)若點的直角坐標為,圓與直線交于兩點,求弦中點的直角坐標和的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com