函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是( )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
對(duì)于數(shù)集A,B,定義A+B={x|x=a+b,a∈A,b∈B},A÷B={x|x=,a∈A,b∈B},若集合A={1,2},則集合(A+A)÷A中所有元素之和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)f(x)的定義域?yàn)?i>D={x|x≠0},且滿足對(duì)于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=x-ln x,則y=f(x)( )
A.在區(qū)間,(1,e)內(nèi)均有零點(diǎn)
B.在區(qū)間,(1,e)內(nèi)均無零點(diǎn)
C.在區(qū)間內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn)
D.在區(qū)間內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí), f(x)=ex-ax,若函數(shù)在R上有且僅有4個(gè)零點(diǎn),則a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)滿足x2f ′(x)+2xf(x)=, f(2)=,則x>0時(shí),f(x)( )
A.有極大值,無極小值
B.有極小值,無極大值
C.既有極大值又有極小值
D.既無極大值也無極小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax--3ln x,其中a為常數(shù).
(1)當(dāng)函數(shù)f(x)圖象在點(diǎn)處的切線的斜率為1時(shí),求函數(shù)f(x)在上的最小值;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上既有極大值又有極小值,求a的取值范圍;
(3)在(1)的條件下,過點(diǎn)P(1,-4)作函數(shù)F(x)=x2[f(x)+3ln x-3]圖象的切線,試問這樣的切線有幾條?并求出這些切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知f1(x)=sin x+cos x,記f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),則=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com