設(shè)α,β是方程x2-ax+b=0的兩個實根,試分析a>2且b>1是兩根α,β均大于1的什么條件?
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)韋達定理表示出a,b,設(shè)出判斷條件和結(jié)論,根據(jù)題意分別證明.
解答: 解:根據(jù)韋達定理得:a=α+β,b=αβ,
判定條件是p:
a>2
b>1
結(jié)論是q:
α>1
β>1

(還要注意條件p中,a,b需滿足的大前提△=a2-4b≥0)
(1)由
α>1
β>1
,得a=α+β>2,b=αβ>1∴q⇒p
(2)為了證明p⇒q,可以舉出反例:取α=4,β=
1
2

它滿足a=α+β=4+
1
2
>2
b=αβ=4×
1
2
=2>1
,但q不成立
上述討論可知:a>2,b>1是α>1,β>1的必要但不充分條件
點評:本題考查了韋達定理,考查充分必要條件,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司員工義務(wù)獻血,在體檢合格人中,O型血有10人,A型血有5人,B型血有8人,AB型血有3人,從4種血型的人中各選一人去獻血,不同的選法種數(shù)為( 。
A、1200B、600
C、300D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
4
+
y2
3
=1
的左焦點作直線交橢圓于A(x1,y1),B(x2,y2)兩點,若x1+x2=-1,則|AB|的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+2x+3在[0,3]上的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果
C
2
n
=28,則n的值為( 。
A、9B、8C、7D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地發(fā)生地質(zhì)災(zāi)害,使當?shù)氐淖詠硭艿搅宋廴荆巢块T對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì).已知每投放質(zhì)量為m的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升) 滿足y=mf(x),其中f(x)=
x2
16
+2(0<x≤4)
x+14
2x-2
  (x>4)
,當藥劑在水中釋放的濃度不低于4(毫克/升) 時稱為有效凈化;當藥劑在水中釋放的濃度不低于4(毫克/升) 且不高于10(毫克/升)時稱為最佳凈化.
(1)如果投放的藥劑質(zhì)量為m=4,試問自來水達到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為m,為了使在7天(從投放藥劑算起包括7天)之內(nèi)的自來水達到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足條件f(0)=0和f(x+2)-f(x)=4x
(1)求f(x);        
(2)求f(x)在區(qū)間[a,a+2](a∈R)上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,
CD
=2
DB
,記
AB
=
a
,
AC
=
b
,則
AD
=(  )
A、
2
3
a
+
1
3
b
B、
2
3
a
-
1
3
b
C、
1
3
a
+
2
3
b
D、
1
3
a
-
2
3
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有兩個白球和3個黑球,從中不放回拿出兩個球,并且每次只拿一個球.
(1)“第一次抽到黑球”的概率是
 
;
(2)“第一次抽到白球”的概率是
 
;
(3)“第二次抽到黑球”的概率是
 
;
(4)“第二次抽到白球”的概率是
 
;
(5)“兩次都抽到白球”的概率是
 
;
(6)“第一次抽到黑球,第二次抽到白球”的概率是
 
;
(7)“沒有抽到黑球”的概率是
 

查看答案和解析>>

同步練習(xí)冊答案