實(shí)驗(yàn)中學(xué)“數(shù)學(xué)王子”張小明在自習(xí)課上,對(duì)正整數(shù)1,2,3,4, 按如下形式排成數(shù)陣好朋友王大安問他“由上而下第20行中從左到右的第三個(gè)數(shù)是多少”張小明自上而下逐個(gè)排了兩節(jié)課,終于找到了這個(gè)數(shù),聰明的你一定知道這個(gè)數(shù)是(      )   
                                  
A.190B.191C.192D.193
D

試題分析:前19行有的數(shù)字個(gè)數(shù)為:1+2+3+4+…+19 =190個(gè);第20行從191開始數(shù)第3個(gè)數(shù)是193,故選D
點(diǎn)評(píng):先通過數(shù)字找到規(guī)律,根據(jù)規(guī)律再計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,三角形數(shù)陣滿足:

(1)第n行首尾兩數(shù)均為n;
(2)表中的遞推關(guān)系類似楊輝三角4則第n行(n≥2)第2個(gè)數(shù)是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(n)=1+(n∈N*),經(jīng)計(jì)算得f(4)>2,f(8)>,f(16)>3,f(32)>,……,觀察上述結(jié)果,則可歸納出一般結(jié)論為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

科拉茨是德國數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:
(1)如果,則按照上述規(guī)則施行變換后的第8項(xiàng)為           
(2)如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正三角形的中心與三個(gè)頂點(diǎn)連線所成的三個(gè)張角相等,其余弦值為,類似地正四面體的中心與四個(gè)頂點(diǎn)連線所成的四個(gè)張角也相等,其余弦值為(    )。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

觀察下列恒等式:
 
∴tanα-=-
∴tan2α-=-
tan4α-=-
由此可知:tan+2tan+4tan=(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列等式:
 




照此規(guī)律, 第n個(gè)等式可為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有一個(gè)奇數(shù)列1,3,5,7,9,…,現(xiàn)進(jìn)行如下分組:第1組含有一個(gè)數(shù){1},第2組含兩個(gè)數(shù){3,5};第3組含三個(gè)數(shù){7,9,11};…試觀察每組內(nèi)各數(shù)之和與其組的編號(hào)數(shù)n的關(guān)系為(  ).
A.等于n2B.等于n3C.等于n4D.等于n(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明:如果a>b>0,則.其中假設(shè)的內(nèi)容應(yīng)是(     )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案