【題目】把函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來(lái)的(縱坐標(biāo)不變),再將圖象上所有點(diǎn)向右平移個(gè)單位,所得函數(shù)圖象所對(duì)應(yīng)的解析式為__.
【答案】
【解析】把圖象上所有點(diǎn)的縱坐標(biāo)不變橫坐標(biāo)縮小到原來(lái)的,得到的圖象,再把函數(shù)的圖象上所有點(diǎn)向右平移個(gè)單位,得到對(duì)圖象, 所求函數(shù)的解析式為,故答案為.
【方法點(diǎn)晴】本題主要考查三角函數(shù)函數(shù)圖象的性質(zhì)及變換,屬于中檔題. 函數(shù)圖像的確定除了可以直接描點(diǎn)畫(huà)出外,還常常利用基本初等函數(shù)圖像經(jīng)過(guò)“平移變換”“翻折變換”“對(duì)稱(chēng)變換”“伸縮變換”得到,在變換過(guò)程中一定要注意:(1)圖象變換要注意先是平移后放縮還是先放縮后平移 ;(2)放縮變換要注意,縱坐標(biāo)“不變”橫坐標(biāo)縮小“到原來(lái)的”詞語(yǔ)的正確運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 為參數(shù)),A,B是C上的動(dòng)點(diǎn),且滿足OA⊥OB(O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)D的極坐標(biāo)為 .
(1)求線段AD的中點(diǎn)M的軌跡E的普通方程;
(2)利用橢圓C的極坐標(biāo)方程證明 為定值,并求△AOB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(-x-1)=f(x-1),其圖象過(guò)點(diǎn)(0,1),且與x軸有唯一交點(diǎn)。
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)-(2+a)x,求g(x)在[1,2]上的最小值h(a)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=ln(1+x)﹣x﹣ax2 .
(1)當(dāng)x=1時(shí),f(x)取到極值,求a的值;
(2)當(dāng)a滿足什么條件時(shí),f(x)在區(qū)間 上有單調(diào)遞增的區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) .
(1)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x﹣2=0垂直,求f(x)的單調(diào)區(qū)間(其中e為自然對(duì)數(shù)的底數(shù));
(2)若對(duì)任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)教師對(duì)所任教的兩個(gè)班級(jí)各抽取20名學(xué)生進(jìn)行測(cè)試,分?jǐn)?shù)分布如表,若成績(jī)120分以上(含120分)為優(yōu)秀.
分?jǐn)?shù)區(qū)間 | 甲班頻率 | 乙班頻率 |
[0,30) | 0.1 | 0.2 |
[30,60) | 0.2 | 0.2 |
[60,90) | 0.3 | 0.3 |
[90,120) | 0.2 | 0.2 |
[120,150] | 0.2 | 0.1 |
優(yōu)秀 | 不優(yōu)秀 | 總計(jì) | |
甲班 | |||
乙班 | |||
總計(jì) |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
(Ⅰ)求從乙班參加測(cè)試的90分以上(含90分)的同學(xué)中,隨機(jī)任取2名同學(xué),恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成上面的2×2列聯(lián)表:在犯錯(cuò)概率小于0.1的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)是否優(yōu)秀與班級(jí)有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠2萬(wàn)元設(shè)計(jì)了某款式的服裝,根據(jù)經(jīng)驗(yàn),每生產(chǎn)1百套該款式服裝的成本為1萬(wàn)元,每生產(chǎn)(百套)的銷(xiāo)售額(單位:萬(wàn)元).
(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤(rùn);
(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?
(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤(rùn)最大,并求最大利潤(rùn).(注:利潤(rùn)=銷(xiāo)售額-成本,其中成本=設(shè)計(jì)費(fèi)+生產(chǎn)成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E是棱PD的中點(diǎn),點(diǎn)F是PC的中點(diǎn). (Ⅰ)證明:PB∥平面AEC;
(Ⅱ)若底面ABCD為正方形, ,求二面角C﹣AF﹣D大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)在定義域[-1,1]上既是奇函數(shù),又是減函數(shù).
(1)求證:對(duì)任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
(2)若f(1-a)+f(1-a2)<0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com