一質點沿直線運動,若由始點起經(jīng)過t秒后的位移為s=
1
3
t3+
3
2
t2-4t+7,那么速度為0的時刻為( 。
A、0秒B、1秒末
C、2秒末D、1秒末和2秒末
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:求函數(shù)的導數(shù),根據(jù)導數(shù)的物理意義即可得到結論.
解答: 解:∵s=
1
3
t3+
3
2
t2-4t+7,
∴v=s′=t2+3t-4,
由v=s′=t2+3t-4=0,解得t=1或t=-4(舍),
故選:B.
點評:本題主要考查導數(shù)的計算,根據(jù)導數(shù)的物理意義是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,3,4),
b
=(6,x,y),若
a
b
,則x+y的值是( 。
A、14B、16C、21D、26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b<-1,則下列不等式成立的是(  )
A、a>-
a
b
a
b2
B、
a
b2
>-
a
b
>a
C、-
a
b
a
b2
>a
D、-
a
b
>a>
a
b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=cos(2x-
π
4
)+
2
sinxcosx+
2
2
-
2
sin2x,下列結論中正確的有( 。
①f(x)是以π為最小正周期的周期函數(shù);
②直線x=
8
是函數(shù)f(x)的一條對稱軸;
③f(x)在區(qū)間(0,
π
2
)上是單調增函數(shù);
④f(x)既不是奇函數(shù),也不是偶函數(shù).
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(1,2)且與直線3x-2y-1=0平行的直線方程是(  )
A、3x-2y+1=0
B、2x-3y+1=0
C、3x-2y+2=0
D、2x-3y+2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)的定義域為R,則p:?x∈R,(f(x)+f(-x))•(f(x)-f(-x))=0是q:f(x)為奇函數(shù)或偶函數(shù)的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=
π
6
,C=
12
,b=2,那么a=( 。
A、
2
B、2
C、2
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,b>0,且不等式
1
a
+
1
b
+
k
a+b
≥0恒成立.則實數(shù)k的最小值等于( 。
A、4B、0C、-2D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx.
(1)當a=1時,求函數(shù)f(x)的極值;
(2)設定義在D上的函數(shù)y=g(x)在點P(x0,y0)處的切線方程為l:y=h(x).當x≠x0時,若
g(x)-h(x)
x-x0
>0在D內(nèi)恒成立,則稱P為函數(shù)y=g(x)的“轉點”.當a=8時,問函數(shù)y=f(x)是否存在“轉點”?若存在,求出“轉點”的橫坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案