共點的四條直線最多能確定
 
個平面.
考點:平面的基本性質(zhì)及推論
專題:空間位置關系與距離
分析:當共點的四條直線沒有任何三條直線共面時,確定的平面最多,此時共能確定
C
2
4
個平面.
解答: 解:當共點的四條直線沒有任何三條直線共面時,
確定的平面最多,
此時共能確定
C
2
4
=6個平面.
故答案為:6
點評:本題考查的知識點是平面的基本性質(zhì)及推論,組合數(shù)公式,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1-log2
2x-1
3-x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)φ(x)=
1
ax-1
+
1
2
,判定函數(shù)φ(x)的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)的定義域為[-1,2],求g(x)=f(x)+f(-x)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx),記函數(shù)f(x)=
a
b
+|
b
|2
(1)求函數(shù)f(x)的周期以及f(x)的最大值和最小值;
(2)求f(x)在[0,
π
2
]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,f(x)=ax2+bx+c,對任意x∈R有f(x+2)=f(2-x),若f(1-2x2)<f(1+2x-x2),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sina+cosa=
2
,a∈(0,π),則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(1+2-
1
32
)(1+2-
1
16
)(1+2-
1
8
)(1+2-
1
4
)(1+2-
1
2
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,兩塊斜邊長相等的直角三角板拼在一起,若
AD
=x
AB
+y
AC
,則x=
 
,y=
 

查看答案和解析>>

同步練習冊答案