cos(-
π
4
)-sin(-
π
4
)的值是
 
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:根據(jù)三角函數(shù)值進行計算即可.
解答: 解:cos(-
π
4
)-sin(-
π
4
)=cos
π
4
+sin
π
4
=
2
2
+
2
2
=
2
,
故答案為:
2
;
點評:本題主要考查三角函數(shù)值的計算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個幾何體的三視圖,其側(cè)面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax2-(a+2)x+1在區(qū)間(-2,-1)上恰有一個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)習(xí)小組在暑期社會實踐活動中,通過對某商場一種品牌服裝銷售情況的調(diào)查發(fā)現(xiàn):該服裝在過去的一個月內(nèi)(以30天計)每件的銷售價格P(x)(百元)與時間x(天)的函數(shù)關(guān)系近似滿足P(x)=1+
k
x
(k為正常數(shù)),日銷售量Q(x)(件)與時間x(天)的部分數(shù)據(jù)如下表所示:
(天)10202530
(件)110120125120
已知第10天的日銷售收入為121(百元).
(Ⅰ)求k的值;
(Ⅱ)給出以下三種函數(shù)模型①Q(mào)(x)=ax+b,②Q(x)=a|x-25|+b,③Q(x)=a•bx,其中a≠0,b>0且b≠1.請你根據(jù)上表中的數(shù)據(jù),從中選擇你認為最合適的一種函數(shù)來描述日銷售量Q(x)(件)與時間x(天)的變化關(guān)系,并求出該函數(shù)的解析式;
(Ⅲ)x取何值時,該服裝的日銷售收入為121百元?(1≤x≤30,x∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<
π
2
)的圖象經(jīng)過點(0,
1
2
),且相鄰兩條對稱軸間的距離為
π
2

(Ⅰ)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A、B、C的對邊,若f(
A
2
)-cosA=
1
2
,且bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)三點A(3,0)、B(0,3)、C(cosα,sinα),若
AC
BC
=-1,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

代數(shù)式
sin(180°-α)
cos(180°+α)
cos(-α)•cos(360°-α)
sin(90°+α)
化簡后的值為( 。
A、cosαB、-cosα
C、sinαD、-sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果復(fù)數(shù)z=
2-bi
1-i
(b∈R)的實部與虛部相等,則z的共軛復(fù)數(shù)
.
z
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a2=6,a5=15,則a2+a4+a6+a8+a10=
 

查看答案和解析>>

同步練習(xí)冊答案