【題目】P為橢圓 + =1上一點(diǎn),F(xiàn)1 , F2為左右焦點(diǎn),若∠F1PF2=60°.
(1)求△F1PF2的面積;
(2)求P點(diǎn)的坐標(biāo).
【答案】
(1)解:由橢圓 + =1可知焦點(diǎn)在x軸上,a=5,b=3,c= =4,
焦點(diǎn)坐標(biāo)為:F1(﹣,4,0),F(xiàn)2(4,0),
設(shè)丨PF1丨=m,丨PF2丨=n,則m+n=2a=10,
由余弦定理可知:m2+n2﹣2mncos60°=(2c)2,
∴(m+n)2﹣2mn﹣2mncos60°=2c2,即100﹣2mn﹣mn=64,
則mn=12,
△F1PF2的面積S,S= mnsin60°= ×12× =3 ,
∴△F1PF2的面積3 ;
(2)解:設(shè)P(x,y),由△F1PF2的面積S,S= ×2c×丨y丨=4丨y丨,
∴4丨y丨=3 ,
則丨y丨= ,y=± ,將y=± 帶入橢圓方程解得x=± ,
∴這樣的P點(diǎn)有四個(gè),P點(diǎn)的坐標(biāo)( , ),(﹣ , ),
( ,﹣ ),(﹣ ,﹣ ).
【解析】(1)由橢圓的方程求得焦點(diǎn)坐標(biāo),根據(jù)余弦定理求得丨PF1丨丨PF2丨,則由三角形面積公式可知:S= 丨PF1丨丨PF2丨sin60°,即可求得△F1PF2的面積;(2)由焦點(diǎn)三角形的面積公式可知:S= ×2c×丨y丨=4丨y丨,由(1)可知4丨y丨=3 ,即可求得y的值,代入橢圓方程,即可求得x的值,求得P點(diǎn)的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|m﹣1≤x≤2m+3},函數(shù)f(x)=lg(﹣x2+2x+8)的定義域?yàn)锽.
(1)當(dāng)m=2時(shí),求A∪B、(RA)∩B;
(2)若A∩B=A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年5月,北京市提出地鐵分段計(jì)價(jià)的相關(guān)意見,針對“你能接受的最高票價(jià)是多少?”這個(gè)問題,在某地鐵站口隨機(jī)對50人進(jìn)行調(diào)查,調(diào)查數(shù)據(jù)的頻率分布直方圖及被調(diào)查者中35歲以下的人數(shù)與統(tǒng)計(jì)結(jié)果如下: (Ⅰ)根據(jù)頻率分布直方圖,求a的值,并估計(jì)眾數(shù),說明此眾數(shù)的實(shí)際意義;
(Ⅱ)從“能接受的最高票價(jià)”落在[8,10),[10,12]的被調(diào)查者中各隨機(jī)選取3人進(jìn)行追蹤調(diào)查,記選中的6人中35歲以上(含35歲)的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
最高票價(jià) | 35歲以下人數(shù) |
[2,4) | 2 |
[4,6) | 8 |
[6,8) | 12 |
[8,10) | 5 |
[10,12] | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C: + =1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經(jīng)過點(diǎn)(0,1).
(1)求實(shí)數(shù)a,b的值;
(2)若過點(diǎn)P(0,m)(m>0)的直線l與橢圓C有且只有一個(gè)公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合{(x,y)|x∈[0,2],y∈[﹣1,1]}
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的有 .
①常數(shù)數(shù)列既是等差數(shù)列也是等比數(shù)列;
②在△ABC中,若sin2A+sin2B=sin2C,則△ABC為直角三角形;
③若A,B為銳角三角形的兩個(gè)內(nèi)角,則tanAtanB>1;
④若Sn為數(shù)列{an}的前n項(xiàng)和,則此數(shù)列的通項(xiàng)an=Sn﹣Sn﹣1(n>1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生村官王善良落實(shí)政府“精準(zhǔn)扶貧”精神,幫助貧困戶張三用9萬元購進(jìn)一部節(jié)能環(huán)保汽車,用于出租.假設(shè)第一年需運(yùn)營費(fèi)用2萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加2萬元,該車每年的運(yùn)營收入均為11萬元.若該車使用了n(n∈N*)年后,年平均盈利額達(dá)到最大值,則n等于(注:年平盈利額=(總收入﹣總成本)× )( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P為△ABC所在平面外一點(diǎn),PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,則H為△ABC的( )
A.重心
B.垂心
C.外心
D.內(nèi)心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P為線段y=2x,x∈[2,4]上任意一點(diǎn),點(diǎn)Q為圓C:(x﹣3)2+(y+2)2=1上一動(dòng)點(diǎn),則線段|PQ|的最小值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com