直線ax+2y+a=0和直線3ax+(a-1)y+7=0平行,則a的值為
 
考點:直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:利用直線平行的性質(zhì)求解.
解答: 解:∵直線ax+2y+a=0和直線3ax+(a-1)y+7=0平行,
a
3a
=
2
a-1
a
7
或a=0,
解得a=7或a=0.
故答案為:0或7.
點評:本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意直線平行的性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(
1
2
+
1
2
ax)+x2-ax,其中a為大于零的常數(shù).
(1)若x=
1
2
是函數(shù)f(x)的一個極值點,求a的值;
(2)判斷函數(shù)f(x)在區(qū)間[
1
2
,+∞)上的單調(diào)性;
(3)若對任意的a∈(1,2),總存在x0∈[
1
2
,1],使不等式f(x0)≥m(1-a2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a和b是任意非零實數(shù).
(1)求證
|2a+b|+|2a-b|
|a|
≥4
;
(2)若不等式|a+b|+|a-b|≥|a(|2+x|+|2-x|)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是邊長為2的正方形,PD⊥平面ABCD,E、F分別是PB、AD的中點,PD=2.
(Ⅰ)求證:EF∥平面PDC;
(Ⅱ)求三棱錐B-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A1,A2雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的頂點,B為雙曲線C的虛軸一個端點.若△A1BA2是等邊三角形,則雙曲線C的離心率e等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2x
-lnx的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(
1
3
 x2-3x<1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

單位向量
i
、
j
相互垂直,向量
α
=3
i
-4
j
,則|
α
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=ax2-2ax+c在區(qū)間[0,1]上單調(diào)遞減,且f(m)≤f(0),則實數(shù)m的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案