已知0<a<b,m>0,求證:
a+m
b+m
a
b
考點(diǎn):不等式的證明
專題:證明題,不等式的解法及應(yīng)用
分析:利用作差法,結(jié)合條件,即可證明結(jié)論.
解答: 證明:
a+m
b+m
-
a
b
=
ab+bm-ab-am
b(b+m)
=
m(b-a)
b(b+m)

∵0<a<b,∴b-a>0,
又m>0,∴b(b+m)>0
m(b-a)
b(b+m)
>0,
a+m
b+m
-
a
b
>0,即
a+m
b+m
a
b
點(diǎn)評(píng):本題考查不等式的證明,考查作差法的運(yùn)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)23有可能是數(shù)列3,5,7,9,11,…中的第(  )項(xiàng).
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+
x2+1
)
滿足f(a-1)+f(b-3)=0,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,若|
AC
|2-|
BD
|2=2|
AB
|•|
AD
|,則∠BAD=(  )
A、
π
6
B、
π
4
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足線性約束條件
x-y+1≥0
2x+y-a≥0
x≤2
,且3x+y的最小值為1,則a=(  )
A、0B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,已知圓C的圓心C(2
2
π
4
)
,半徑r=2
2

(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)若α∈[0,
π
4
]
,直線l的參數(shù)方程為
x=3+tcosα
y=1+tsinα
(t為參數(shù)),直線l交圓C于A、B 兩點(diǎn),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若以F為右焦點(diǎn)的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左支上存在一點(diǎn)P,使得線段PF被y=
b
a
x垂直平分,則雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某幾何體的三視圖(單位:cm),正視圖是等腰梯形,俯視圖中的曲線是兩個(gè)同心的半圓,側(cè)視圖是直角梯形.則該幾何體的體積等于
 
cm3,它的表面積等于
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校為了響應(yīng)《中共中央國(guó)務(wù)院關(guān)于加強(qiáng)青少年體育增強(qiáng)青少年體質(zhì)的意見(jiàn)》精神,落實(shí)“生命-和諧”教育理念和陽(yáng)光體育行動(dòng)的現(xiàn)代健康理念,學(xué)校特組織“踢毽球”大賽,某班為了選出一人參加比賽,對(duì)班上甲乙兩位同學(xué)進(jìn)行了8次測(cè)試,且每次測(cè)試之間是相互獨(dú)立.成績(jī)?nèi)缦拢海▎挝唬簜(gè)/分鐘)
8081937288758384
8293708477877885
(1)用莖葉圖表示這兩組數(shù)據(jù)
(2)從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派那位學(xué)生參加比賽合適,請(qǐng)說(shuō)明理由?
(3)若將頻率視為概率,對(duì)甲同學(xué)在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)高于79個(gè)/分鐘的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.
(參考數(shù)據(jù):22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32=344)

查看答案和解析>>

同步練習(xí)冊(cè)答案