【題目】解關(guān)于x的不等式ax2﹣(a+1)x+1<0.

【答案】解:當(dāng)a=0時(shí),不等式的解為{x|x>1};
當(dāng)a≠0時(shí),分解因式a(x﹣ )(x﹣1)<0
當(dāng)a<0時(shí),原不等式整理得:x2 x+ >0,即(x﹣ )(x﹣1)>0,
不等式的解為{x|x>1或x< };
當(dāng)0<a<1時(shí),1< ,不等式的解為{x|1<x< };
當(dāng)a>1時(shí), <1,不等式的解為{x| <x<1};
當(dāng)a=1時(shí),不等式的解為
【解析】當(dāng)a=0時(shí),得到一個(gè)一元一次不等式,求出不等式的解集即為原不等式的解集;當(dāng)a≠0時(shí),把原不等式的左邊分解因式,然后分4種情況考慮:a小于0,a大于0小于1,a大于1和a等于1時(shí),分別利用求不等式解集的方法求出原不等式的解集即可.
【考點(diǎn)精析】掌握解一元二次不等式是解答本題的根本,需要知道求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夾角為銳角,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐ABCD﹣PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD與BC所成角的大;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A﹣PC﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, , 分別為棱的中點(diǎn).

(1)在平面內(nèi)過點(diǎn)平面于點(diǎn),并寫出作圖步驟,但不要求證明.

(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題是( 。
A.?x0∈R,
B.?x∈R,
C.“a>1,b>1”是“ab>1”的充要條件
D.設(shè) , 為向量,則“|?|=||||”是“”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是DD1的中點(diǎn),
(1)求點(diǎn)A到平面A1DE的距離;
(2)求證:CF∥平面A1DE;
(3)求二面角E﹣A1D﹣A的平面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí),f(x)=log (﹣x+1).
(1)求f(x)的解析式;
(2)若f(a﹣1)<﹣1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案